MemDefense: Defending against Membership Inference Attacks in IoT-based Federated Learning via Pruning Perturbations

计算机科学 修剪 推论 物联网 计算机安全 人工智能 机器学习 农学 生物
作者
Meng Shen,Jin Meng,Ke Xu,Shui Yu,Liehuang Zhu
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tbdata.2024.3403388
摘要

Depending on large-scale devices, the Internet of Things (IoT) provides massive data support for resource sharing and intelligent decision, but privacy risks also increase. As a popular distributed learning framework, Federated Learning (FL) is widely used because it does not need to share raw data while only parameters to collaboratively train models. However, Federated Learning is not spared by some emerging attacks, e.g., membership inference attack. Therefore, for IoT devices with limited resources, it is challenging to design a defense scheme against the membership inference attack ensuring high model utility, strong membership privacy and acceptable time efficiency. In this paper, we propose MemDefense, a lightweight defense mechanism to prevent membership inference attack from local models and global models in IoT-based FL, while maintaining high model utility. MemDefense adds crafted pruning perturbations to local models at each round of FL by deploying two key components, i.e., parameter filter and noise generator. Specifically, the parameter filter selects the apposite model parameters which have little impact on the model test accuracy and contribute more to member inference attacks. Then, the noise generator is used to find the pruning noise that can reduce the attack accuracy while keeping high model accuracy, protecting each participant's membership privacy. We comprehensively evaluate MemDefense with different deep learning models and multiple benchmark datasets. The experimental results show that lowcost MemDefense drastically reduces the attack accuracy within limited drop of classification accuracy, meeting the requirements for model utility, membership privacy and time efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
leei完成签到,获得积分10
1秒前
竹的叶完成签到,获得积分10
1秒前
深情安青应助疑夕采纳,获得10
1秒前
2秒前
Hello应助不打游戏_采纳,获得10
2秒前
Lx发布了新的文献求助10
2秒前
zuoyueyue发布了新的文献求助10
2秒前
爆米花应助ppc采纳,获得10
2秒前
甜甜的铭发布了新的文献求助30
2秒前
ink发布了新的文献求助10
3秒前
3秒前
4秒前
起朱楼完成签到,获得积分10
4秒前
章鱼完成签到,获得积分10
4秒前
4秒前
4秒前
小二郎应助Devon采纳,获得10
6秒前
汪金完成签到,获得积分10
6秒前
6秒前
6秒前
kira发布了新的文献求助10
6秒前
小青椒应助躞蹀采纳,获得30
6秒前
独孤刘完成签到,获得积分10
7秒前
JamesPei应助害羞山晴采纳,获得10
7秒前
8秒前
LI完成签到,获得积分10
8秒前
8秒前
8秒前
weiweiwu12完成签到,获得积分10
9秒前
ssjsjn发布了新的文献求助10
9秒前
9秒前
Lily完成签到,获得积分10
9秒前
clxgene发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
一叶知秋完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406