MemDefense: Defending against Membership Inference Attacks in IoT-based Federated Learning via Pruning Perturbations

计算机科学 修剪 推论 物联网 计算机安全 人工智能 机器学习 农学 生物
作者
Meng Shen,Jin Meng,Ke Xu,Shui Yu,Liehuang Zhu
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tbdata.2024.3403388
摘要

Depending on large-scale devices, the Internet of Things (IoT) provides massive data support for resource sharing and intelligent decision, but privacy risks also increase. As a popular distributed learning framework, Federated Learning (FL) is widely used because it does not need to share raw data while only parameters to collaboratively train models. However, Federated Learning is not spared by some emerging attacks, e.g., membership inference attack. Therefore, for IoT devices with limited resources, it is challenging to design a defense scheme against the membership inference attack ensuring high model utility, strong membership privacy and acceptable time efficiency. In this paper, we propose MemDefense, a lightweight defense mechanism to prevent membership inference attack from local models and global models in IoT-based FL, while maintaining high model utility. MemDefense adds crafted pruning perturbations to local models at each round of FL by deploying two key components, i.e., parameter filter and noise generator. Specifically, the parameter filter selects the apposite model parameters which have little impact on the model test accuracy and contribute more to member inference attacks. Then, the noise generator is used to find the pruning noise that can reduce the attack accuracy while keeping high model accuracy, protecting each participant's membership privacy. We comprehensively evaluate MemDefense with different deep learning models and multiple benchmark datasets. The experimental results show that lowcost MemDefense drastically reduces the attack accuracy within limited drop of classification accuracy, meeting the requirements for model utility, membership privacy and time efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
椰子完成签到,获得积分10
2秒前
dzc完成签到,获得积分20
3秒前
Lyubb完成签到 ,获得积分10
4秒前
MoNeng发布了新的文献求助10
5秒前
6秒前
月半完成签到,获得积分10
6秒前
7秒前
VDC应助karstbing采纳,获得30
7秒前
浮游应助草中有粑粑采纳,获得10
7秒前
Orange应助冰激凌采纳,获得10
8秒前
小康完成签到,获得积分10
8秒前
9秒前
沉静弘文完成签到 ,获得积分10
9秒前
充电宝应助王也采纳,获得10
10秒前
linclee完成签到,获得积分10
11秒前
11秒前
佳期发布了新的文献求助10
11秒前
兜兜完成签到 ,获得积分10
12秒前
目m完成签到,获得积分10
12秒前
李斯濛完成签到,获得积分10
13秒前
pangkuan发布了新的文献求助10
16秒前
21秒前
23秒前
英俊的铭应助shuqi采纳,获得10
24秒前
26秒前
搞怪人雄完成签到,获得积分10
26秒前
ceeray23应助坦率的草丛采纳,获得10
27秒前
28秒前
29秒前
orixero应助理理采纳,获得10
30秒前
30秒前
沉默是金发布了新的文献求助10
31秒前
31秒前
31秒前
蒲云海发布了新的文献求助10
32秒前
科研通AI6应助熙辞辞采纳,获得10
33秒前
35秒前
35秒前
二饼发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478