MemDefense: Defending against Membership Inference Attacks in IoT-based Federated Learning via Pruning Perturbations

计算机科学 修剪 推论 物联网 计算机安全 人工智能 机器学习 农学 生物
作者
Meng Shen,Jin Meng,Ke Xu,Shui Yu,Liehuang Zhu
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:: 1-13
标识
DOI:10.1109/tbdata.2024.3403388
摘要

Depending on large-scale devices, the Internet of Things (IoT) provides massive data support for resource sharing and intelligent decision, but privacy risks also increase. As a popular distributed learning framework, Federated Learning (FL) is widely used because it does not need to share raw data while only parameters to collaboratively train models. However, Federated Learning is not spared by some emerging attacks, e.g., membership inference attack. Therefore, for IoT devices with limited resources, it is challenging to design a defense scheme against the membership inference attack ensuring high model utility, strong membership privacy and acceptable time efficiency. In this paper, we propose MemDefense, a lightweight defense mechanism to prevent membership inference attack from local models and global models in IoT-based FL, while maintaining high model utility. MemDefense adds crafted pruning perturbations to local models at each round of FL by deploying two key components, i.e., parameter filter and noise generator. Specifically, the parameter filter selects the apposite model parameters which have little impact on the model test accuracy and contribute more to member inference attacks. Then, the noise generator is used to find the pruning noise that can reduce the attack accuracy while keeping high model accuracy, protecting each participant's membership privacy. We comprehensively evaluate MemDefense with different deep learning models and multiple benchmark datasets. The experimental results show that lowcost MemDefense drastically reduces the attack accuracy within limited drop of classification accuracy, meeting the requirements for model utility, membership privacy and time efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美丽钢铁侠完成签到,获得积分10
1秒前
欣欣发布了新的文献求助10
1秒前
1秒前
西柚完成签到,获得积分10
2秒前
duorou完成签到 ,获得积分20
2秒前
陈乐宁2024发布了新的文献求助10
2秒前
mjnrhw发布了新的文献求助10
2秒前
K99发布了新的文献求助10
3秒前
3秒前
4秒前
异乡人发布了新的文献求助30
4秒前
脑洞疼应助meng采纳,获得10
4秒前
闪闪蹇完成签到,获得积分10
4秒前
空城完成签到 ,获得积分10
5秒前
合适苗条发布了新的文献求助10
5秒前
XXF完成签到,获得积分10
5秒前
称心的青亦完成签到 ,获得积分10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
夜幕应助科研通管家采纳,获得20
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得20
7秒前
科研通AI6应助满家归寻采纳,获得10
7秒前
辛勤访文发布了新的文献求助10
7秒前
yangxt-iga完成签到,获得积分20
7秒前
Dliii完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144