亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MemDefense: Defending against Membership Inference Attacks in IoT-based Federated Learning via Pruning Perturbations

计算机科学 修剪 推论 物联网 计算机安全 人工智能 机器学习 农学 生物
作者
Meng Shen,Jin Meng,Ke Xu,Shui Yu,Liehuang Zhu
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tbdata.2024.3403388
摘要

Depending on large-scale devices, the Internet of Things (IoT) provides massive data support for resource sharing and intelligent decision, but privacy risks also increase. As a popular distributed learning framework, Federated Learning (FL) is widely used because it does not need to share raw data while only parameters to collaboratively train models. However, Federated Learning is not spared by some emerging attacks, e.g., membership inference attack. Therefore, for IoT devices with limited resources, it is challenging to design a defense scheme against the membership inference attack ensuring high model utility, strong membership privacy and acceptable time efficiency. In this paper, we propose MemDefense, a lightweight defense mechanism to prevent membership inference attack from local models and global models in IoT-based FL, while maintaining high model utility. MemDefense adds crafted pruning perturbations to local models at each round of FL by deploying two key components, i.e., parameter filter and noise generator. Specifically, the parameter filter selects the apposite model parameters which have little impact on the model test accuracy and contribute more to member inference attacks. Then, the noise generator is used to find the pruning noise that can reduce the attack accuracy while keeping high model accuracy, protecting each participant's membership privacy. We comprehensively evaluate MemDefense with different deep learning models and multiple benchmark datasets. The experimental results show that lowcost MemDefense drastically reduces the attack accuracy within limited drop of classification accuracy, meeting the requirements for model utility, membership privacy and time efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Anxietymaker采纳,获得10
刚刚
斯文的硬币完成签到 ,获得积分10
1秒前
4秒前
欣欣完成签到,获得积分10
6秒前
10秒前
13秒前
14秒前
Soleil发布了新的文献求助10
16秒前
执着亿先发布了新的文献求助10
19秒前
是个哑巴发布了新的文献求助10
20秒前
20秒前
Xiaoping完成签到 ,获得积分10
20秒前
于涵艺完成签到,获得积分10
22秒前
汉堡包应助123采纳,获得10
23秒前
明亮紫易完成签到,获得积分10
25秒前
不信人间有白头完成签到 ,获得积分10
27秒前
冉亦完成签到,获得积分10
30秒前
彭于晏应助是个哑巴采纳,获得10
31秒前
在水一方应助123采纳,获得10
37秒前
linfordlu发布了新的文献求助30
43秒前
43秒前
43秒前
科研通AI6应助执着亿先采纳,获得10
44秒前
江夏完成签到 ,获得积分10
46秒前
瓜兮兮CYY发布了新的文献求助10
46秒前
懒洋洋发布了新的文献求助10
48秒前
贪玩的万仇完成签到 ,获得积分10
49秒前
Akim应助瓜兮兮CYY采纳,获得10
52秒前
共享精神应助Soleil采纳,获得10
54秒前
谨慎采白完成签到 ,获得积分10
55秒前
LB完成签到,获得积分0
58秒前
Owen应助科研通管家采纳,获得10
59秒前
852应助科研通管家采纳,获得10
59秒前
852应助科研通管家采纳,获得10
59秒前
59秒前
Criminology34应助科研通管家采纳,获得10
59秒前
充电宝应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657742
求助须知:如何正确求助?哪些是违规求助? 4811989
关于积分的说明 15080182
捐赠科研通 4815962
什么是DOI,文献DOI怎么找? 2576976
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490512