Training Large-Scale Graph Neural Networks Via Graph Partial Pooling

计算机科学 联营 图形 人工智能 理论计算机科学
作者
Qi Zhang,Yanfeng Sun,Shaofan Wang,Junbin Gao,Yongli Hu,Baocai Yin
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tbdata.2024.3403380
摘要

Graph Neural Networks (GNNs) are powerful tools for graph representation learning, but they face challenges when applied to large-scale graphs due to substantial computational costs and memory requirements. To address scalability limitations, various methods have been proposed, including samplingbased and decoupling-based methods. However, these methods have their limitations: sampling-based methods inevitably discard some link information during the sampling process, while decoupling-based methods require alterations to the model's structure, reducing their adaptability to various GNNs. This paper proposes a novel graph pooling method, Graph Partial Pooling (GPPool), for scaling GNNs to large-scale graphs. GPPool is a versatile and straightforward technique that enhances training efficiency while simultaneously reducing memory requirements. GPPool constructs small-scale pooled graphs by pooling partial nodes into supernodes. Each pooled graph consists of supernodes and unpooled nodes, preserving valuable local and global information. Training GNNs on these graphs reduces memory demands and enhances their performance. Additionally, this paper provides a theoretical analysis of training GNNs using GPPool-constructed graphs from a graph diffusion perspective. It shows that a GNN can be transformed from a large-scale graph into pooled graphs with minimal approximation error. A series of experiments on datasets of varying scales demonstrates the effectiveness of GPPool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗完成签到 ,获得积分10
刚刚
完美天蓝完成签到 ,获得积分10
刚刚
hushan53发布了新的文献求助10
刚刚
沈千千发布了新的文献求助10
2秒前
2秒前
高豪英完成签到,获得积分10
2秒前
镜哥完成签到,获得积分10
2秒前
香蕉觅云应助zxfaaaaa采纳,获得10
2秒前
3秒前
朝北完成签到 ,获得积分10
3秒前
友好驳发布了新的文献求助10
3秒前
程住气完成签到 ,获得积分10
4秒前
婷婷应助一颗大树采纳,获得30
4秒前
Ava应助XIXI采纳,获得10
4秒前
修fei完成签到 ,获得积分10
4秒前
vanshaw.vs发布了新的文献求助10
5秒前
猴哥完成签到 ,获得积分10
5秒前
向日葵完成签到,获得积分10
7秒前
仇悦发布了新的文献求助10
8秒前
珊珊完成签到 ,获得积分10
9秒前
zhu完成签到,获得积分10
9秒前
Zhou完成签到,获得积分0
10秒前
Ava应助LXYSB采纳,获得10
11秒前
jianguo完成签到,获得积分10
11秒前
Puan应助Xu采纳,获得10
12秒前
腾腾完成签到 ,获得积分10
13秒前
carpybala完成签到,获得积分20
13秒前
15秒前
无花果应助vanshaw.vs采纳,获得10
16秒前
Miracle完成签到,获得积分10
16秒前
IBMffff完成签到 ,获得积分10
17秒前
慕青应助nenenn采纳,获得10
18秒前
18秒前
19秒前
momo发布了新的文献求助10
20秒前
小飞棍完成签到,获得积分10
20秒前
20秒前
20秒前
大美女完成签到,获得积分10
21秒前
21秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388