化学
促炎细胞因子
STAT蛋白
体内
CTGF公司
车站3
纤维化
分子生物学
SMAD公司
转化生长因子
细胞生物学
癌症研究
炎症
信号转导
生物
免疫学
生长因子
内科学
医学
生物化学
受体
生物技术
作者
Y. C. Xu,Chang Zheng,Ping Jiang,Si-qi Ji,Shafi Ullah,Yu Zhao,Dan Su,Guifang Xu,Mingming Zhang,Xiaoping Zou
标识
DOI:10.1016/j.intimp.2024.112298
摘要
Excessive activation of colonic fibroblasts and differentiation of T helper 17 (Th17) cells are the key steps for intestinal fibrogenesis in the process of inflammatory bowel disease (IBD). Although both transforming growth factor-beta (TGF-β)/Mothers Against Decapentaplegic Homolog (SMAD) 3-induced fibroblasts activation and interleukin (IL)-6/signal transducer and activator of transcription (STAT) 3-induced Th17 differentiation have been well studied, the crosstalk between fibroblasts and Th17 cells in the process of intestinal fibrogenesis needs to be unveiled. In this study, the activation of colonic fibroblasts was induced with dextran sulfate sodium salt (DSS) and TGF-β in vivo and in vitro respectively. P-SMAD3 and its downstream targets were quantified using RT-PCR, western blot and immunofluorescence. The differentiation of programmed death 1 (PD-1) + Th17 and activation of fibroblasts were quantified by FACS. PD-1+ Th17 cells and fibroblasts were co-cultured and cytokines in the supernatant were tested by ELISA. The anti-fibrosis effects of different chemical compounds were validated in vitro and further confirmed in vivo. The colonic fibroblasts were successfully activated by DSS and TGF-β in vivo and in vitro respectively, as activation markers of fibroblasts (p-SMAD3 and its downstream targets such as Acta2, Col1a1 and Ctgf) were significantly increased. The activated fibroblasts produced more IL-6 compared with their inactivated counterparts in vivo and in vitro. The proinflammatory cytokine IL-6 induced PD-1+ Th17 differentiation and TGF-β that in return promoted the activation of colonic fibroblasts. Fraxinellone inhibited TGF-β+ PD-1+ Th17 cells via deactivating STAT3. The reciprocal stimulation constructed a circuit of PD-1+ Th17 cells and fibroblasts that accelerated the fibrosis process. Fraxinellone was selected as the potential inhibitor of the circuit of PD-1+ Th17 cells and fibroblasts in vivo and in vitro. Inhibiting the circuit of PD-1+ Th17 cells and fibroblasts could be a promising strategy to alleviate intestinal fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI