分割
人工智能
图像分割
计算机科学
计算机视觉
变压器
模式识别(心理学)
工程类
电压
电气工程
作者
Pengcheng Li,Chenqiang Gao,Chunfeng Lian,Deyu Meng
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
被引量:1
标识
DOI:10.1109/tmi.2024.3406015
摘要
Tooth instance segmentation of dental panoramic X-ray images represents a task of significant clinical importance. Teeth demonstrate symmetry within the upper and lower jawbones and are arranged in a specific order. However, previous studies frequently overlook this crucial spatial prior information, resulting in misidentifications of tooth categories for adjacent or similarly shaped teeth. In this paper, we propose SPGTNet, a spatial prior-guided transformer method, designed to both the extracted tooth positional features from CNNs and the long-range contextual information from vision transformers for dental panoramic X-ray image segmentation. Initially, a center-based spatial prior perception module is employed to identify each tooth's centroid, thereby enhancing the spatial prior information for the CNN sequence features. Subsequently, a bi-directional cross-attention module is designed to facilitate the interaction between the spatial prior information of the CNN sequence features and the long-distance contextual features of the vision transformer sequence features. Finally, an instance identification head is employed to derive the tooth segmentation results. Extensive experiments on three public benchmark datasets have demonstrated the effectiveness and superiority of our proposed method in comparison with other state-of-the-art approaches. The proposed method demonstrates the capability to accurately identify and analyze tooth structures, thereby providing crucial information for dental diagnosis, treatment planning, and research.
科研通智能强力驱动
Strongly Powered by AbleSci AI