Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.