DPC-DNG: Graph-based label propagation of k-nearest higher-density neighbors for density peaks clustering

可缩放矢量图形 图形 数学 计算机科学 算法 组合数学 万维网
作者
Yan Li,Lingyun Sun,Yongchuan Tang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:161: 111773-111773
标识
DOI:10.1016/j.asoc.2024.111773
摘要

Density peaks clustering (DPC) algorithm is a novel density-based clustering approach that effectively determines cluster centers from a decision graph and groups objects by assigning non-center objects to the same cluster as their nearest higher-density neighbor. Although DPC can allocate clusters of arbitrary shapes, its single-chain label propagation mechanism has the risk of "chain error", where an object assigned an incorrect label causes its subordinates to also be assigned the same incorrect label. Hence, DPC is unable to effectively group objects that are located in overlapping areas between clusters, which leads to unsatisfactory clustering results. To address this issue, this study proposes the graph-based label propagation of k-nearest higher-density neighbor for density peaks clustering (DPC-DNG). DPC-DNG extends the single-chain label propagation of DPC to a graph-based multi-chain label propagation that assigns labels to objects from their k-nearest higher-density neighbors. First, based on k-nearest higher-density neighbors and the selected cluster centers, a symmetric density-based neighbor graph (DNG) is constructed. Second, to assign labels to objects, a classic graph-based label propagation mechanism is utilized in conjunction with DNG. To validate our method, we carry out comprehensive experiments on 6 synthetic and 12 real datasets. Statistically speaking, the results show that our method has improved the clustering performance of DPC and exhibits promising performance over other state-of-the-art DPC-related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoyunlong完成签到,获得积分10
1秒前
Lucas应助黄金帅苹果采纳,获得10
1秒前
搞科研的小郭完成签到 ,获得积分10
1秒前
fang完成签到 ,获得积分10
2秒前
充电宝应助carbon-dots采纳,获得10
2秒前
5秒前
5秒前
Mo完成签到,获得积分20
7秒前
lmt完成签到,获得积分10
9秒前
fuchao发布了新的文献求助10
11秒前
13秒前
健康的皮带完成签到,获得积分10
14秒前
是十二呀完成签到,获得积分10
15秒前
隐形曼青应助Singularity采纳,获得10
17秒前
DK应助LIN采纳,获得10
17秒前
传奇3应助缥缈傥采纳,获得10
18秒前
20秒前
22秒前
哈哈哈完成签到 ,获得积分10
22秒前
紫霃完成签到,获得积分10
22秒前
香蕉觅云应助luo采纳,获得10
25秒前
bvh发布了新的文献求助10
26秒前
27秒前
小灰灰完成签到 ,获得积分10
29秒前
29秒前
缥缈傥发布了新的文献求助10
30秒前
31秒前
自信的九娘完成签到,获得积分10
31秒前
32秒前
33秒前
枯木完成签到 ,获得积分10
36秒前
37秒前
pip1412发布了新的文献求助10
37秒前
39秒前
weirdo发布了新的文献求助10
39秒前
40秒前
44秒前
向春山发布了新的文献求助10
45秒前
星辰大海应助迷路尔曼采纳,获得10
46秒前
小墨鱼完成签到,获得积分10
48秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102