DPC-DNG: Graph-based label propagation of k-nearest higher-density neighbors for density peaks clustering

聚类分析 亲和繁殖 k-最近邻算法 图形 星团(航天器) 聚类系数 模式识别(心理学) 数学 计算机科学 人工智能 组合数学 理论计算机科学 相关聚类 CURE数据聚类算法 程序设计语言
作者
Yan Li,Lingyun Sun,Yongchuan Tang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:161: 111773-111773 被引量:2
标识
DOI:10.1016/j.asoc.2024.111773
摘要

Density peaks clustering (DPC) algorithm is a novel density-based clustering approach that effectively determines cluster centers from a decision graph and groups objects by assigning non-center objects to the same cluster as their nearest higher-density neighbor. Although DPC can allocate clusters of arbitrary shapes, its single-chain label propagation mechanism has the risk of "chain error", where an object assigned an incorrect label causes its subordinates to also be assigned the same incorrect label. Hence, DPC is unable to effectively group objects that are located in overlapping areas between clusters, which leads to unsatisfactory clustering results. To address this issue, this study proposes the graph-based label propagation of k-nearest higher-density neighbor for density peaks clustering (DPC-DNG). DPC-DNG extends the single-chain label propagation of DPC to a graph-based multi-chain label propagation that assigns labels to objects from their k-nearest higher-density neighbors. First, based on k-nearest higher-density neighbors and the selected cluster centers, a symmetric density-based neighbor graph (DNG) is constructed. Second, to assign labels to objects, a classic graph-based label propagation mechanism is utilized in conjunction with DNG. To validate our method, we carry out comprehensive experiments on 6 synthetic and 12 real datasets. Statistically speaking, the results show that our method has improved the clustering performance of DPC and exhibits promising performance over other state-of-the-art DPC-related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栩墨完成签到 ,获得积分10
刚刚
满意的初南完成签到 ,获得积分10
2秒前
4秒前
5秒前
7秒前
周至发布了新的文献求助10
8秒前
谢惠茹完成签到,获得积分10
8秒前
外向宛海完成签到,获得积分20
8秒前
陈秋发布了新的文献求助10
10秒前
12秒前
13秒前
14秒前
r41r32完成签到 ,获得积分10
15秒前
15秒前
头头完成签到,获得积分20
16秒前
耶椰耶完成签到 ,获得积分10
16秒前
灵犀完成签到,获得积分10
16秒前
17秒前
xx完成签到 ,获得积分10
19秒前
ASA应助aji采纳,获得10
19秒前
kkk发布了新的文献求助10
21秒前
zZ发布了新的文献求助10
21秒前
领导范儿应助ll采纳,获得30
22秒前
22秒前
22秒前
FFFFFF发布了新的文献求助10
26秒前
所所应助生动凝旋采纳,获得10
27秒前
apollo3232完成签到,获得积分10
28秒前
田様应助南栀采纳,获得10
29秒前
百里如雪发布了新的文献求助10
29秒前
大模型应助肥四采纳,获得10
29秒前
妥妥酱完成签到,获得积分10
29秒前
31秒前
clown关注了科研通微信公众号
32秒前
小饼饼完成签到 ,获得积分10
32秒前
科研小菜鸟i完成签到,获得积分10
32秒前
Singularity应助科研通管家采纳,获得10
33秒前
1+1应助科研通管家采纳,获得10
33秒前
我是老大应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671735
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9779943
捐赠科研通 2938695
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760602
科研通“疑难数据库(出版商)”最低求助积分说明 736096