DDCTNet: A Deformable and Dynamic Cross Transformer Network for Road Extraction from High Resolution Remote Sensing Images

遥感 计算机科学 高分辨率 变压器 图像分辨率 人工智能 计算机视觉 地质学 工程类 电压 电气工程
作者
Lipeng Gao,Yiqing Zhou,Jiangtao Tian,Wenjing Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19
标识
DOI:10.1109/tgrs.2024.3404044
摘要

Influenced by the concepts of deep learning, extracting roads from high-resolution remote sensing scenes has gained significant attention. However, there are still limitations in both metrics and practical application scenarios. To address these limitations, we proposed a deformable and dynamic cross-transformer network (DDCTNet), introducing three key innovations. Firstly, we employed a deformable and dynamic cross-transformer (DDCT) attention module to enhance the recovery of data and structural information during the feature map upsampling by providing rich semantic information of encoding stage to decoding stage from spatial and channel dimensions, respectively, which improved the quality of upsampling while preserving the inherent characteristics of the road. Secondly, we introduced a cross-scale strip-pooling axial attention (CSSA) between discontinuous encoding stages to alleviate the information loss caused by down-sampling and highlight the linear characteristic of roads by leveraging rich semantic information from previous stage, which not only considers road linear features in complex scenes but also reduces computational complexity. Finally, we designed an auxiliary head (AuxHead) by fusing the outputs from the latter three decoding modules to enhance the model's generalization performance and convergence speed. Extensive experiments were conducted on three benchmark datasets. We also compared our DDCTNet with other classic road extraction models. The results show a noticeable improvement of 1%-5% across various evaluation metrics in three datasets. Additionally, the visualized results demonstrate that the proposed DDCTNet provides more accurate representations of real road scenes including distinguishing regions with high foreground-background similarity, addressing road occlusion, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
漠池完成签到,获得积分10
1秒前
YiWei发布了新的文献求助10
2秒前
Largequail应助芝麻糊采纳,获得20
3秒前
阿修罗完成签到,获得积分20
3秒前
Xiaoshen完成签到,获得积分10
4秒前
里涵完成签到,获得积分10
5秒前
传奇3应助小中采纳,获得10
5秒前
科研通AI2S应助jicm采纳,获得10
5秒前
CH发布了新的文献求助10
6秒前
xiaqian发布了新的文献求助10
6秒前
Trust完成签到,获得积分10
9秒前
汉堡包应助刘66采纳,获得10
9秒前
简单点完成签到,获得积分10
10秒前
12秒前
12秒前
Connie完成签到,获得积分20
13秒前
14秒前
zyy发布了新的文献求助10
14秒前
14秒前
15秒前
SciGPT应助向上采纳,获得10
16秒前
16秒前
wuxx发布了新的文献求助10
17秒前
17秒前
Phosphene应助细腻孤兰采纳,获得10
18秒前
mozaiyan发布了新的文献求助10
18秒前
滴哒发布了新的文献求助10
19秒前
19秒前
忆茶戏发布了新的文献求助10
21秒前
Xiaoshen发布了新的文献求助10
21秒前
22秒前
英姑应助苹果紫萱采纳,获得10
24秒前
mozaiyan完成签到,获得积分20
24秒前
Akim应助Connie采纳,获得10
25秒前
26秒前
YiWei完成签到 ,获得积分10
26秒前
27秒前
27秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120178
求助须知:如何正确求助?哪些是违规求助? 2770845
关于积分的说明 7705580
捐赠科研通 2426002
什么是DOI,文献DOI怎么找? 1288363
科研通“疑难数据库(出版商)”最低求助积分说明 620947
版权声明 600010