亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature learning network with transformer for multi-label image classification

突出 人工智能 模式识别(心理学) 计算机科学 特征(语言学) 变压器 编码器 特征学习 电压 工程类 操作系统 哲学 语言学 电气工程
作者
Wei Zhou,Peng Dou,Tao Su,Haifeng Hu,Zhijie Zheng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:136: 109203-109203 被引量:24
标识
DOI:10.1016/j.patcog.2022.109203
摘要

The purpose of multi-label image classification task is to accurately assign a set of labels to the objects in images. Although promising results have been achieved, most of the existing methods cannot effectively learn multi-scale features, so it is difficult to identify small-scale objects from images. Besides, current attention-based methods tend to learn the most salient feature regions in images, but fail to excavate various potential useful features concealed by the most salient feature, thus limiting the further improvement of model performance. To address above issues, we propose a novel Feature Learning network based on Transformer to learn salient features and excavate potential useful features (FL-Tran). Specifically, in order to solve the problem that current methods are difficult to identify small-scale objects, we first present a novel multi-scale fusion module (MSFM) to align high-level features and low-level features to learn multi-scale features. Additionally, a spatial attention module (SAM) utilizing transformer encoder is introduced to capture salient object features in images to enhance the model performance. Furthermore, we devise a feature enhancement and suppression module (FESM) with the aim of excavating potential useful features concealed by the most salient features. By suppressing the most salient features obtained in current SAM layer, and then forcing subsequent SAM layer to excavate potential salient features in feature maps, FL-Tran model can learn various useful features more comprehensively. Extensive experiments on MS-COCO 2014, PASCAL VOC 2007, and NUS-WIDE datasets demonstrate that our proposed FL-Tran model outperforms current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
35秒前
景木游发布了新的文献求助10
40秒前
46秒前
岁岁完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
llljjj发布了新的文献求助10
1分钟前
1分钟前
li发布了新的文献求助10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
hey发布了新的文献求助10
1分钟前
li完成签到,获得积分20
1分钟前
FY发布了新的文献求助10
1分钟前
2分钟前
2分钟前
moninaaaaa发布了新的文献求助10
2分钟前
2分钟前
豆豆完成签到,获得积分10
2分钟前
2分钟前
科研冰山完成签到,获得积分10
2分钟前
2分钟前
小雨点发布了新的文献求助10
2分钟前
2分钟前
2分钟前
asd1576562308完成签到 ,获得积分10
2分钟前
2分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
3分钟前
藤椒辣鱼应助科研通管家采纳,获得20
3分钟前
善学以致用应助moninaaaaa采纳,获得10
3分钟前
Otter完成签到,获得积分10
3分钟前
3分钟前
3分钟前
wangping发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445112
求助须知:如何正确求助?哪些是违规求助? 3041073
关于积分的说明 8983872
捐赠科研通 2729647
什么是DOI,文献DOI怎么找? 1497123
科研通“疑难数据库(出版商)”最低求助积分说明 692159
邀请新用户注册赠送积分活动 689691