Euclidean distance-based Raman spectroscopy (EDRS) for the prognosis analysis of gastric cancer: A solution to tumor heterogeneity

癌症 拉曼光谱 内科学 医学 肿瘤科 生存分析 病理 光学 物理
作者
Wenfang Wang,Bowen Shi,Chang He,Siyi Wu,Zhu Lan,Jiang Jiang,Lingyun Wang,Li Lin,Jian Ye,Huan Zhang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:288: 122163-122163 被引量:16
标识
DOI:10.1016/j.saa.2022.122163
摘要

The prognosis analysis of gastric cancer is critical for selection of treatments and development of advanced therapeutic methods. A prognosis approach that is accurate, fast, convenient, and of low cost for gastric cancers is in high demand. Raman spectroscopy is a label-free and non-destructive technique to provide molecular fingerprints of biological samples, holding promises for cancer prognosis. However, the major challenge of gastric cancer prognosis lies in the widely existing tumor heterogeneity, which leads to unexpected spectral variations within one type of samples. In this work, we have developed the Euclidean distance (ED)-based Raman spectroscopy (EDRS) method for the prognosis analysis of gastric cancer to eliminate the influence of tumor heterogeneity. Raman spectra were first collected on the slices of paraffin-preserved tumor tissues from gastric cancer patients. A standard spectrum to represent the ‘worst prognostic tumor cells’ was then established. The similarity between each spectrum of tissues and the standard spectrum was assessed by ED, to provide a direct assessment on the prognosis status. We have successfully classified the patients into poor and favorable prognosis groups, either based on the averaged regional ED values (sensitivity of 75 %, specificity of 96.8 %), or based on the minimal ED values at the patient level (sensitivity of 90 %, specificity of 100 %). EDRS was also investigated for survival analysis (AUC = 0.955), much better than the commonly applied post-neoadjuvant therapy (ypTNM) category (AUC = 0.718). Our work highlights EDRS as a rapid, accurate, low-cost and robust tool for heterogeneous cancer-related prognosis assessment and survival prediction, providing new insights for spectroscopic tumor analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只是朋友还是完成签到,获得积分10
1秒前
Spring发布了新的文献求助10
2秒前
2秒前
2秒前
老鼠人发布了新的文献求助10
3秒前
Pendragon完成签到,获得积分10
4秒前
super chan发布了新的文献求助10
6秒前
zying发布了新的文献求助10
8秒前
9秒前
大力半鬼完成签到,获得积分10
9秒前
科研通AI2S应助狂野大雄鹰采纳,获得10
10秒前
田様应助七个丸子采纳,获得30
11秒前
小白发布了新的文献求助10
11秒前
锋feng完成签到 ,获得积分10
12秒前
今后应助执笔画流年采纳,获得10
12秒前
meimei完成签到 ,获得积分10
13秒前
Jasper应助hms采纳,获得10
13秒前
14秒前
zsm668发布了新的文献求助10
15秒前
老鼠人完成签到,获得积分20
15秒前
万能图书馆应助lian采纳,获得10
15秒前
KaiZI完成签到 ,获得积分10
16秒前
lalafish完成签到,获得积分0
16秒前
独特的秋完成签到,获得积分10
16秒前
19秒前
慕青应助小白采纳,获得10
20秒前
yuaasusanaann发布了新的文献求助10
20秒前
23秒前
七个丸子发布了新的文献求助30
23秒前
Lucas应助愉快凡旋采纳,获得10
24秒前
26秒前
刘壮实完成签到,获得积分10
26秒前
yz123完成签到,获得积分10
28秒前
28秒前
小二郎应助动人的念波采纳,获得10
30秒前
zhangruiii发布了新的文献求助10
31秒前
yang完成签到,获得积分10
32秒前
呉冥11应助yuaasusanaann采纳,获得10
33秒前
求知若渴完成签到,获得积分0
35秒前
七个丸子完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975