The human-following strategy for mobile robots in mixed environments

计算机科学 机器人 移动机器人 任务(项目管理) 人机交互 人工智能 障碍物 功能(生物学) 计算机视觉 管理 进化生物学 政治学 法学 经济 生物
作者
Nguyen Van Toan,Minh Do Hoang,Phan Bùi Khôi,Soo-Yeong Yi
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:160: 104317-104317 被引量:11
标识
DOI:10.1016/j.robot.2022.104317
摘要

The robot behavior strategy is considered as a crucial part in the human-following task to help the robot maintain an appropriate distance and orientation to the selected target person (STP) with a smooth and safe manner. As usual, the robot is uniquely considered to follow the STP in a specific class of environments, such as unknown environments (non-mapped environments) or known environments (mapped environments). However, in real-life applications, the robot is sometimes requested to follow the STP in various types of environments, both in known and unknown ones. This observation raises the need to propose an alternative method to challenge the mentioned issue, as well as to break the current limit of the human-following function. In this paper, a new approach for the human-following strategy is proposed in which the mobile robot is enabled to follow the STP in mixed environments (non-mapped and mapped). In non-mapped environments, only the STP and the obstacle information with respect to the robot local coordinates are considered, whose purpose is to make the robot work without any prior understandings about its working environment. However, after the robot entered mapped environments, its prior knowledge of the working environment is leveraged to fulfill some additional requirements during the cooperation, such as the mobile robot in factories is not allowed to enter some specific areas even when the STP is executing technical tasks inside. Additionally, in this paper, a human-like inference mechanism is also introduced for the human-following strategy by using an extended hedge algebras. The proposed method is experimentally verified both in factories and laboratories. Demo Video Link: https://www.youtube.com/watch?v=YGrWU6ldKuw Since real videos in the factory are not allowed to publish, only visualization (in Rviz) is presented for demos in such kinds of environments. The visualization is synchronous with the real executions of the human–robot interactions. The robot used in the factory is an autonomous mobile robot (dimension 0.5 (m) ×1.0 (m), weight 120 (kg), carrying a tool cabinet around 300(kg))). The mobile robot is following the worker to support them during the technical processes in the car production line. In the video, the robot is represented by a green rectangular, and the STP is represented by a cylinder (with a sphere on its head) The events in the demo video are described more clearly in Appendix A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆的脑袋应助涛浪采纳,获得10
刚刚
隐形曼青应助皮皮桂采纳,获得10
1秒前
凝子老师完成签到,获得积分10
1秒前
奶糖发布了新的文献求助30
1秒前
TORCH完成签到 ,获得积分10
3秒前
李健的小迷弟应助lin采纳,获得10
3秒前
3秒前
4秒前
TT发布了新的文献求助10
4秒前
奶糖完成签到,获得积分10
7秒前
丘比特应助浪迹天涯采纳,获得10
8秒前
10秒前
10秒前
虚幻白玉发布了新的文献求助10
11秒前
清客完成签到 ,获得积分10
11秒前
传奇3应助阳阳采纳,获得10
11秒前
13秒前
皮皮桂发布了新的文献求助10
13秒前
Hello应助无奈傲菡采纳,获得10
13秒前
故意的傲玉应助FENGHUI采纳,获得10
14秒前
15秒前
科研通AI5应助nextconnie采纳,获得10
16秒前
James完成签到,获得积分10
16秒前
17秒前
Lucas应助sun采纳,获得10
18秒前
KristenStewart完成签到,获得积分10
20秒前
过时的热狗完成签到,获得积分10
20秒前
点点完成签到,获得积分10
20秒前
Zxc发布了新的文献求助10
21秒前
涨芝士完成签到 ,获得积分10
22秒前
23秒前
无名欧文关注了科研通微信公众号
23秒前
科研123完成签到,获得积分10
25秒前
crescent完成签到 ,获得积分10
27秒前
无奈傲菡发布了新的文献求助10
27秒前
烟花应助123号采纳,获得10
30秒前
超帅的遥完成签到,获得积分10
30秒前
Zxc完成签到,获得积分10
31秒前
lbt完成签到 ,获得积分10
32秒前
yao完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849