Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking

代谢组学 代谢组 生物信息学 代谢物 注释 代谢网络 计算生物学 计算机科学 代谢途径 系统生物学 鉴定(生物学) 生物网络 生物 生物信息学 生物化学 人工智能 基因 植物
作者
Zhiwei Zhou,Mingdu Luo,Haosong Zhang,Yandong Yin,Yuping Cai,Zheng‐Jiang Zhu
出处
期刊:Nature Communications [Springer Nature]
卷期号:13 (1) 被引量:24
标识
DOI:10.1038/s41467-022-34537-6
摘要

Abstract Liquid chromatography - mass spectrometry (LC-MS) based untargeted metabolomics allows to measure both known and unknown metabolites in the metabolome. However, unknown metabolite annotation is a major challenge in untargeted metabolomics. Here, we develop an approach, namely, knowledge-guided multi-layer network (KGMN), to enable global metabolite annotation from knowns to unknowns in untargeted metabolomics. The KGMN approach integrates three-layer networks, including knowledge-based metabolic reaction network, knowledge-guided MS/MS similarity network, and global peak correlation network. To demonstrate the principle, we apply KGMN in an in vitro enzymatic reaction system and different biological samples, with ~100–300 putative unknowns annotated in each data set. Among them, >80% unknown metabolites are corroborated with in silico MS/MS tools. Finally, we validate 5 metabolites that are absent in common MS/MS libraries through repository mining and synthesis of chemical standards. Together, the KGMN approach enables efficient unknown annotations, and substantially advances the discovery of recurrent unknown metabolites for common biological samples from model organisms, towards deciphering dark matter in untargeted metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到,获得积分20
刚刚
贪玩亿先完成签到 ,获得积分10
1秒前
缥缈傥发布了新的文献求助10
1秒前
2秒前
木偶完成签到 ,获得积分10
3秒前
4秒前
5秒前
8秒前
Sepsp发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助ely采纳,获得10
11秒前
14秒前
haowu发布了新的文献求助10
14秒前
xiaoyemao完成签到,获得积分10
15秒前
17秒前
茹果果发布了新的文献求助10
18秒前
18秒前
小蝶发布了新的文献求助10
20秒前
微笑完成签到,获得积分10
20秒前
秃头医生完成签到,获得积分10
20秒前
VDC发布了新的文献求助10
21秒前
23秒前
在水一方应助一年八篇sci采纳,获得10
23秒前
25秒前
25秒前
29秒前
星辰大海应助阿治采纳,获得10
29秒前
30秒前
xiayiyi完成签到 ,获得积分10
31秒前
32秒前
34秒前
34秒前
俊熙C发布了新的文献求助10
34秒前
宇文三德发布了新的文献求助10
35秒前
36秒前
李爱国应助左丘以莲采纳,获得10
36秒前
科研通AI2S应助能干世界采纳,获得10
37秒前
加油冲冲冲完成签到,获得积分10
38秒前
陈住气发布了新的文献求助10
39秒前
39秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228