生物
非生物成分
褐飞虱
非生物胁迫
保幼激素
转录组
性二态性
基因
进化生物学
遗传学
生态学
昆虫
基因表达
内分泌学
作者
Jingxiang Chen,Wan‐Xue Li,Qin Su,Jun Lyu,Yi‐Bing Zhang,Wenqing Zhang
出处
期刊:Insect Science
[Wiley]
日期:2022-11-16
卷期号:30 (4): 1046-1062
被引量:2
标识
DOI:10.1111/1744-7917.13149
摘要
Abstract Wing polymorphism is an evolutionary trait that is widely present in various insects and provides a model system for studying the evolutionary significance of insect dispersal. The brown planthopper (BPH, Nilaparvata lugens ) can alter its wing morphs under biotic and abiotic stress. However, whether differential signaling pathways are induced by the 2 types of stress remain largely unknown. Here, we screened a number of candidate genes through weighted gene co‐expression network analysis (WGCNA) and found that ornithine decarboxylase ( Nl ODC), a key enzyme in the synthesis of polyamines, was associated with wing differentiation in BPH and mainly responded to abiotic stress stimuli. We analyzed the Kyoto Encyclopedia of Genes and Genomes enrichment pathways of differentially expressed genes under the 2 stresses by transcriptomic comparison, and found that biotic stress mainly influenced insulin‐related signaling pathways while abiotic stress mainly influenced hormone‐related pathways. Moreover, we found that insulin receptor 1 ( NlInR1 ) may regulate wing differentiation of BPH by responding to both biotic and abiotic stress, but NlInR2 only responded to biotic stress. Similarly, the juvenile hormone epoxide hydrolase associated with juvenile hormone degradation and Nl ODC may regulate wing differentiation mainly through abiotic stress. A model based on the genes and stresses to modulate the wing dimorphism of BPH was proposed. These findings present a comprehensive molecular mechanism for wing polymorphism in BPH induced by biotic and abiotic stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI