Preoperative Assessment of MRI‐Invisible Early‐Stage Endometrial Cancer With MRI‐Based Radiomics Analysis

接收机工作特性 医学 磁共振成像 曼惠特尼U检验 逻辑回归 放射科 无线电技术 曲线下面积 子宫内膜癌 核医学 回顾性队列研究 癌症 内科学 病理
作者
Xiaoting Jiang,Jiacheng Song,Aining Zhang,Wenjun Cheng,Shaofeng Duan,Xi-Sheng Liu,Ting Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (1): 247-255 被引量:11
标识
DOI:10.1002/jmri.28492
摘要

Radiomics-based analyses have demonstrated impact on studies of endometrial cancer (EC). However, there have been no radiomics studies investigating preoperative assessment of MRI-invisible EC to date.To develop and validate radiomics models based on sagittal T2-weighted images (T2WI) and T1-weighted contrast-enhanced images (T1CE) for the preoperative assessment of MRI-invisible early-stage EC and myometrial invasion (MI).Retrospective.One hundred fifty-eight consecutive patients (mean age 50.7 years) with MRI-invisible endometrial lesions were enrolled from June 2016 to March 2022 and randomly divided into the training (n = 110) and validation cohort (n = 48) using a ratio of 7:3.3-T, T2WI, and T1CE sequences, turbo spin echo.Two radiologists performed image segmentation and extracted features. Endometrial lesions were histopathologically classified as benign, dysplasia, and EC with or without MI. In the training cohort, 28 and 20 radiomics features were selected to build Model 1 and Model 2, respectively, generating rad-score 1 (RS1) and rad-score 2 (RS2) for evaluating MRI-invisible EC and MI.The least absolute shrinkage and selection operator logistic regression method was used to select radiomics features. Mann-Whitney U tests and Chi-square test were used to analyze continuous and categorical variables. Receiver operating characteristic curve (ROC) and decision curve analysis were used for performance evaluation. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. A P-value <0.05 was considered statistically significant.Model 1 had good performance for preoperative detecting of MRI-invisible early-stage EC in the training and validation cohorts (AUC: 0.873 and 0.918). In addition, Model 2 had good performance in assessment of MI of MRI-invisible endometrial lesions in the training and validation cohorts (AUC: 0.854 and 0.834).MRI-based radiomics models may provide good performance for detecting MRI-invisible EC and MI.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
生化老子发布了新的文献求助10
1秒前
英姑应助落叶无声采纳,获得10
2秒前
人到中年耶完成签到,获得积分10
2秒前
2秒前
耿耿发布了新的文献求助10
3秒前
4秒前
靖宇完成签到,获得积分10
4秒前
彭于晏应助Skywalker采纳,获得10
4秒前
万能图书馆应助陈王采纳,获得10
4秒前
Akim应助哈哈哈采纳,获得10
4秒前
斯文败类应助自信的山柏采纳,获得10
5秒前
6秒前
7秒前
7秒前
Kinkrit发布了新的文献求助10
7秒前
老北京发布了新的文献求助20
7秒前
潇洒皮带完成签到,获得积分10
7秒前
来自沙漠的笨蛋鸵鸟完成签到,获得积分10
9秒前
钱多多完成签到 ,获得积分10
10秒前
10秒前
汉堡包应助ayintree采纳,获得10
10秒前
九月完成签到,获得积分10
11秒前
不许放羊发布了新的文献求助10
11秒前
12秒前
12秒前
gxc发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
Bupivacaine发布了新的文献求助10
16秒前
李健应助李海采纳,获得10
17秒前
沉静代秋发布了新的文献求助10
18秒前
孙明浩完成签到 ,获得积分10
19秒前
20秒前
21秒前
方子发布了新的文献求助10
22秒前
xiaohuang发布了新的文献求助10
22秒前
阿耐迪克完成签到 ,获得积分0
23秒前
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449176
求助须知:如何正确求助?哪些是违规求助? 4557406
关于积分的说明 14262954
捐赠科研通 4480266
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445109
关于科研通互助平台的介绍 1420965