Preoperative Assessment of MRI‐Invisible Early‐Stage Endometrial Cancer With MRI‐Based Radiomics Analysis

接收机工作特性 医学 磁共振成像 曼惠特尼U检验 逻辑回归 放射科 无线电技术 曲线下面积 子宫内膜癌 核医学 回顾性队列研究 癌症 内科学 病理
作者
Xiaoting Jiang,Jiacheng Song,Aining Zhang,Wenjun Cheng,Shaofeng Duan,Xi-Sheng Liu,Ting Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (1): 247-255 被引量:11
标识
DOI:10.1002/jmri.28492
摘要

Radiomics-based analyses have demonstrated impact on studies of endometrial cancer (EC). However, there have been no radiomics studies investigating preoperative assessment of MRI-invisible EC to date.To develop and validate radiomics models based on sagittal T2-weighted images (T2WI) and T1-weighted contrast-enhanced images (T1CE) for the preoperative assessment of MRI-invisible early-stage EC and myometrial invasion (MI).Retrospective.One hundred fifty-eight consecutive patients (mean age 50.7 years) with MRI-invisible endometrial lesions were enrolled from June 2016 to March 2022 and randomly divided into the training (n = 110) and validation cohort (n = 48) using a ratio of 7:3.3-T, T2WI, and T1CE sequences, turbo spin echo.Two radiologists performed image segmentation and extracted features. Endometrial lesions were histopathologically classified as benign, dysplasia, and EC with or without MI. In the training cohort, 28 and 20 radiomics features were selected to build Model 1 and Model 2, respectively, generating rad-score 1 (RS1) and rad-score 2 (RS2) for evaluating MRI-invisible EC and MI.The least absolute shrinkage and selection operator logistic regression method was used to select radiomics features. Mann-Whitney U tests and Chi-square test were used to analyze continuous and categorical variables. Receiver operating characteristic curve (ROC) and decision curve analysis were used for performance evaluation. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. A P-value <0.05 was considered statistically significant.Model 1 had good performance for preoperative detecting of MRI-invisible early-stage EC in the training and validation cohorts (AUC: 0.873 and 0.918). In addition, Model 2 had good performance in assessment of MI of MRI-invisible endometrial lesions in the training and validation cohorts (AUC: 0.854 and 0.834).MRI-based radiomics models may provide good performance for detecting MRI-invisible EC and MI.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stella应助一定读懂aaa采纳,获得30
刚刚
1秒前
1秒前
1秒前
诺言完成签到,获得积分10
1秒前
3秒前
GPTea应助zdd采纳,获得20
4秒前
诺言发布了新的文献求助10
4秒前
赘婿应助大请第一比巴比采纳,获得10
5秒前
r6ud65发布了新的文献求助10
5秒前
lvjiahui发布了新的文献求助10
5秒前
丘比特应助zjy采纳,获得10
5秒前
Spteer完成签到,获得积分10
6秒前
ZRT134发布了新的文献求助10
6秒前
Lucas应助信仰采纳,获得10
7秒前
汪汪发布了新的文献求助10
8秒前
快乐土豆完成签到 ,获得积分10
8秒前
10秒前
11秒前
11秒前
桑尼号完成签到,获得积分10
11秒前
12秒前
LuLan0401完成签到,获得积分10
12秒前
13秒前
Lucas应助冰可乐真的好喝采纳,获得10
13秒前
13秒前
14秒前
徐佳达发布了新的文献求助10
14秒前
汪汪完成签到,获得积分20
14秒前
14秒前
远山等故归完成签到,获得积分20
14秒前
16秒前
16秒前
元夕发布了新的文献求助10
17秒前
小小波发布了新的文献求助10
17秒前
李爱国应助要毕业的小刘采纳,获得10
17秒前
坚强的笑天完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360951
求助须知:如何正确求助?哪些是违规求助? 4491367
关于积分的说明 13982317
捐赠科研通 4394105
什么是DOI,文献DOI怎么找? 2413767
邀请新用户注册赠送积分活动 1406580
关于科研通互助平台的介绍 1381139