Influence and prediction of PM2.5 through multiple environmental variables in China

归一化差异植被指数 中国 环境科学 构造盆地 空间分布 主成分分析 自然地理学 共同空间格局 空气污染 风速 污染 气候学 分布(数学) 驱动因素 可持续发展 地理 气象学 气候变化 地质学 统计 生态学 遥感 数学 古生物学 考古 数学分析 海洋学 生物
作者
Haoyu Jin,Xiaohong Chen,Ruida Zhong,Moyang Liu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:849: 157910-157910 被引量:58
标识
DOI:10.1016/j.scitotenv.2022.157910
摘要

Fine particulate matter (PM2.5) is an important indicator to measure the degree of air pollution. With the pursuit of sustainable development of China's economy and society, air pollution has been paid more and more attention. The spatial distribution of PM2.5 is affected by multiple factors. In this study, we selected Normalized Difference Vegetation Index (NDVI), precipitation, temperature, wind speed and elevation data to analyze the impact of each variable on PM2.5 in different regions of China. The results show that the high-value areas of PM2.5 were mainly concentrated in the North China Plain, the middle and lower reaches of the Yangtze River Plain, the Sichuan Basin, and the Tarim Basin. PM2.5 showed an upward trend in North China, Northeast China and Northwest China, while in most of South China, especially the Sichuan Basin, PM2.5 showed a downward trend. Therefore, the northern region of China needs to take measures to curb the growth of PM2.5. In Northwest China, wind speed and temperature had a greater impact on PM2.5. In North China, wind speed had a greater impact on PM2.5. In southern China, temperature and NDVI had a greater impact on PM2.5. The deep learning model can better simulate the spatial distribution of PM2.5 based on the selected variables. The clustering effect of single variable is better than multivariate spatial information clustering based on principal component analysis (PCA). It is difficult to explain which variable has the greatest impact on PCA clustering. This study can provide an important reference for PM2.5 prevention and control in different regions of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuaishuyi发布了新的文献求助10
1秒前
丘比特应助甜蜜鹭洋采纳,获得10
1秒前
Stanfuny完成签到,获得积分10
1秒前
1秒前
易安发布了新的文献求助10
1秒前
鲸鱼发布了新的文献求助10
3秒前
愉快寄真发布了新的文献求助10
3秒前
天天快乐应助kiki采纳,获得10
3秒前
狗蛋应助刻苦不弱采纳,获得10
3秒前
heheheli发布了新的文献求助10
3秒前
HeyHsc完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
鹿阿布完成签到,获得积分10
5秒前
Patrick完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
LionontheMars完成签到,获得积分10
7秒前
CHBW完成签到,获得积分10
7秒前
奥特超曼应助小K采纳,获得10
7秒前
嘻嘻嘻完成签到,获得积分10
8秒前
8秒前
Yoo.完成签到,获得积分10
8秒前
小马甲应助CJM采纳,获得10
8秒前
1111111111111发布了新的文献求助10
8秒前
wdy111应助项初蝶采纳,获得20
9秒前
9秒前
深情安青应助顺利紫山采纳,获得10
9秒前
cs发布了新的文献求助10
9秒前
9秒前
李健应助轻风采纳,获得10
9秒前
LionontheMars发布了新的文献求助10
10秒前
dsfgbh完成签到,获得积分20
10秒前
小赖不赖发布了新的文献求助10
11秒前
乐乐应助和谐的万宝路采纳,获得10
11秒前
谭玲慧完成签到,获得积分10
12秒前
Owen应助1111111111111采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635