Layered input GradiNet for image denoising

计算机科学 图像去噪 降噪 人工智能 图像(数学) 计算机视觉 模式识别(心理学)
作者
Shuang Qiao,Jiarui Yang,Tian Zhang,Chenyi Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:254: 109587-109587 被引量:12
标识
DOI:10.1016/j.knosys.2022.109587
摘要

In image denoising, the recovery of high-frequency regions, such as image edges, directly affects the quality of the denoised images. However, previous deep learning-based denoising methods fail to effectively allocate the transmission of different frequency information and have difficulty giving network attention to high-frequency regions. In this paper, we rethink the fusion of image gradients in a neural network and deeply mine the intrinsic structure of the input image to propose a novel layered input gradient network (LIGN) for image denoising. The core of our network focuses on the features of different frequencies through two networks, which contain several key elements: (a) The input noise image is layered to widen the shallow layer of the network and to promote the hierarchical learning of different types of frequencies. (b) A multiscale feature extraction (MFE) block and information shunting (IS) block are proposed to integrate and separate various frequency features. (c) A gradient network (GradiNet) is designed to extract high-frequency information by network training, and the information is adaptively added to the input of the parallel main network (MainNet) through normalization to obtain high-quality images. Furthermore, we propose a sharpening loss function to enhance the texture details of the denoised image and improve visual quality. Extensive experiments on synthetic and real-world datasets show that the proposed method greatly enhances perceptual visual quality and achieves state-of-the-art performance on both PSNR and SSIM. The source code and pretrained models are available at https://github.com/JerryYann/LIGN . • A layered input gradient network (LIGN) based on a dual U-Net for high-quality image denoising is proposed. • Layered input and sharpening loss greatly improve the perceptual quality of the denoised image. • Multi-scale feature extraction block can capture more semantic information. • LIGN achieves the SoTA performance compared with the latest methods on synthetic and real noise datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淳于一江完成签到,获得积分20
刚刚
Xx发布了新的文献求助40
刚刚
1秒前
1秒前
2秒前
小蘑菇应助廖念采纳,获得10
4秒前
6秒前
苏苏发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
平常寒烟完成签到,获得积分10
8秒前
123456完成签到 ,获得积分10
8秒前
科研笨男人完成签到,获得积分10
9秒前
9秒前
芍药完成签到 ,获得积分10
10秒前
11秒前
20发布了新的文献求助10
12秒前
闻风听雨发布了新的文献求助10
13秒前
Xx完成签到,获得积分10
13秒前
14秒前
15秒前
笛九完成签到 ,获得积分10
15秒前
17秒前
万能图书馆应助诗意采纳,获得10
18秒前
VV完成签到,获得积分10
21秒前
隆龙完成签到,获得积分10
21秒前
Jiatong7完成签到,获得积分10
21秒前
leaolf应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
fendy应助科研通管家采纳,获得50
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
LaTeXer应助科研通管家采纳,获得100
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301