Layered input GradiNet for image denoising

计算机科学 图像去噪 降噪 人工智能 图像(数学) 计算机视觉 模式识别(心理学)
作者
Shuang Qiao,Jiarui Yang,Tian Zhang,Chenyi Zhao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:254: 109587-109587 被引量:5
标识
DOI:10.1016/j.knosys.2022.109587
摘要

In image denoising, the recovery of high-frequency regions, such as image edges, directly affects the quality of the denoised images. However, previous deep learning-based denoising methods fail to effectively allocate the transmission of different frequency information and have difficulty giving network attention to high-frequency regions. In this paper, we rethink the fusion of image gradients in a neural network and deeply mine the intrinsic structure of the input image to propose a novel layered input gradient network (LIGN) for image denoising. The core of our network focuses on the features of different frequencies through two networks, which contain several key elements: (a) The input noise image is layered to widen the shallow layer of the network and to promote the hierarchical learning of different types of frequencies. (b) A multiscale feature extraction (MFE) block and information shunting (IS) block are proposed to integrate and separate various frequency features. (c) A gradient network (GradiNet) is designed to extract high-frequency information by network training, and the information is adaptively added to the input of the parallel main network (MainNet) through normalization to obtain high-quality images. Furthermore, we propose a sharpening loss function to enhance the texture details of the denoised image and improve visual quality. Extensive experiments on synthetic and real-world datasets show that the proposed method greatly enhances perceptual visual quality and achieves state-of-the-art performance on both PSNR and SSIM. The source code and pretrained models are available at https://github.com/JerryYann/LIGN . • A layered input gradient network (LIGN) based on a dual U-Net for high-quality image denoising is proposed. • Layered input and sharpening loss greatly improve the perceptual quality of the denoised image. • Multi-scale feature extraction block can capture more semantic information. • LIGN achieves the SoTA performance compared with the latest methods on synthetic and real noise datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋锵锵发布了新的文献求助10
1秒前
YQQ发布了新的文献求助10
5秒前
10秒前
任ren完成签到 ,获得积分10
11秒前
GuangboXia完成签到,获得积分10
13秒前
衣蝉完成签到 ,获得积分10
14秒前
甜蜜星星发布了新的文献求助10
17秒前
Hello应助执着凡梦采纳,获得10
18秒前
charlotte0429完成签到 ,获得积分10
23秒前
123完成签到 ,获得积分10
23秒前
萧水白应助科研通管家采纳,获得10
24秒前
泡泡茶壶o完成签到 ,获得积分10
24秒前
甜蜜星星完成签到,获得积分20
27秒前
YQQ完成签到,获得积分10
28秒前
星光完成签到 ,获得积分10
29秒前
29秒前
YQQ发布了新的文献求助10
31秒前
唯梦完成签到 ,获得积分10
31秒前
蒋锵锵完成签到 ,获得积分20
32秒前
wx1完成签到 ,获得积分0
33秒前
执着凡梦发布了新的文献求助10
34秒前
Leo完成签到 ,获得积分10
37秒前
Sg完成签到,获得积分10
40秒前
su完成签到 ,获得积分10
40秒前
执着凡梦完成签到,获得积分10
43秒前
长安乱世完成签到 ,获得积分10
43秒前
天天快乐应助Sg采纳,获得10
48秒前
子蓼完成签到 ,获得积分10
48秒前
阳炎完成签到,获得积分10
49秒前
王磊完成签到 ,获得积分10
52秒前
EVEN完成签到 ,获得积分10
53秒前
糊涂的青烟完成签到 ,获得积分10
55秒前
l7826522完成签到,获得积分10
59秒前
nuliguan完成签到 ,获得积分10
59秒前
研友_ZA2B68完成签到,获得积分10
1分钟前
微笑的水桃完成签到 ,获得积分10
1分钟前
1分钟前
bing完成签到 ,获得积分10
1分钟前
wongcong发布了新的文献求助10
1分钟前
葱饼完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162364
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899801
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142