Layered input GradiNet for image denoising

计算机科学 图像去噪 降噪 人工智能 图像(数学) 计算机视觉 模式识别(心理学)
作者
Shuang Qiao,Jiarui Yang,Tian Zhang,Chenyi Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:254: 109587-109587 被引量:12
标识
DOI:10.1016/j.knosys.2022.109587
摘要

In image denoising, the recovery of high-frequency regions, such as image edges, directly affects the quality of the denoised images. However, previous deep learning-based denoising methods fail to effectively allocate the transmission of different frequency information and have difficulty giving network attention to high-frequency regions. In this paper, we rethink the fusion of image gradients in a neural network and deeply mine the intrinsic structure of the input image to propose a novel layered input gradient network (LIGN) for image denoising. The core of our network focuses on the features of different frequencies through two networks, which contain several key elements: (a) The input noise image is layered to widen the shallow layer of the network and to promote the hierarchical learning of different types of frequencies. (b) A multiscale feature extraction (MFE) block and information shunting (IS) block are proposed to integrate and separate various frequency features. (c) A gradient network (GradiNet) is designed to extract high-frequency information by network training, and the information is adaptively added to the input of the parallel main network (MainNet) through normalization to obtain high-quality images. Furthermore, we propose a sharpening loss function to enhance the texture details of the denoised image and improve visual quality. Extensive experiments on synthetic and real-world datasets show that the proposed method greatly enhances perceptual visual quality and achieves state-of-the-art performance on both PSNR and SSIM. The source code and pretrained models are available at https://github.com/JerryYann/LIGN . • A layered input gradient network (LIGN) based on a dual U-Net for high-quality image denoising is proposed. • Layered input and sharpening loss greatly improve the perceptual quality of the denoised image. • Multi-scale feature extraction block can capture more semantic information. • LIGN achieves the SoTA performance compared with the latest methods on synthetic and real noise datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Hey采纳,获得10
刚刚
丘比特应助小猪采纳,获得10
1秒前
2秒前
昏睡的洋葱完成签到,获得积分20
3秒前
素龙发布了新的文献求助10
4秒前
4秒前
Mushroom007发布了新的文献求助10
6秒前
7秒前
英俊的铭应助石头采纳,获得10
7秒前
冷静长颈鹿完成签到 ,获得积分10
7秒前
汉堡包应助默默安双采纳,获得10
7秒前
香蕉觅云应助Abiu采纳,获得10
8秒前
海上十二日完成签到,获得积分10
8秒前
jjy完成签到,获得积分10
8秒前
LLL发布了新的文献求助10
8秒前
wanci应助WaNgZY采纳,获得10
9秒前
明理映真完成签到,获得积分10
9秒前
9秒前
上官若男应助一根藤采纳,获得10
10秒前
10秒前
10秒前
Lxx完成签到,获得积分10
11秒前
荷塘月色完成签到,获得积分10
12秒前
12秒前
13秒前
ELSA完成签到,获得积分20
13秒前
螺丝老人发布了新的文献求助10
16秒前
玛玛卡卡发布了新的文献求助10
16秒前
ZX发布了新的文献求助10
16秒前
昀云完成签到 ,获得积分10
17秒前
17秒前
17秒前
17秒前
天天向上发布了新的文献求助10
18秒前
18秒前
烟花应助有一个盆采纳,获得10
18秒前
李依伊完成签到,获得积分10
18秒前
研友_Z6W9B8完成签到,获得积分10
20秒前
20秒前
SciGPT应助温柔体贴阿尔法采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952627
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090192
捐赠科研通 3228661
什么是DOI,文献DOI怎么找? 1785008
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344