The role of artificial intelligence in modern ophthalmology

眼科 人工智能 心理学 验光服务 计算机科学 医学
作者
Sabina S. Mamedova,Alsu I. Karimova,A. Galieva,Maria A. Malkhanova,Sofya S. Polyankina,Aigul I. Kuchumova,Yana Ya. Tarasova,Dmitry U. Tsuan,Olga V. Klets,Veronika N. Gerbutova,Andrey V. Olenichev,Eliza O. Ushakova,Aigul K. Minnikhalilova
出处
期刊:Oftalʹmologičeskie vedomosti [ECO-Vector]
卷期号:17 (1): 103-113
标识
DOI:10.17816/ov625627
摘要

Currently, artificial intelligence is actively being introduced into various spheres of life, and medicine is no exception. In ophthalmology, the use of artificial intelligence is very promising, given that the diagnosis and therapeutic monitoring of eye diseases often depend heavily on the correct interpretation of images. The use of artificial intelligence in ophthalmology focuses on eye diseases that lead to vision loss, such as age-related macular degeneration, diabetic retinopathy, glaucoma and cataract. Over the past few years, artificial intelligence has reached tremendous successes in the practice of ophthalmology. Many studies have shown that artificial intelligence performance is equal to and even exceeds the capabilities of ophthalmologists in many diagnostic and prognostic tasks. However, there is still a lot of work to be done before introducing artificial intelligence into routine clinical practice. Issues such as real-world performance, generalizability, and interpretability of artificial intelligence systems are still poorly understood and will require more attention in future research. Most artificial intelligence-based systems are used in developed countries, and some require further study. High costs and a shortage in doctors and equipment in some regions of the Russian Federation and rural areas make it difficult to screen for eye diseases. Although the field of artificial intelligence is underdeveloped, we hope that artificial intelligence will play an important role in the future of ophthalmology by making healthcare more efficient, accurate and accessible, especially in regions where staffing problems exist.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周发布了新的文献求助10
2秒前
2秒前
丢丢银发布了新的文献求助10
3秒前
liuyang1991完成签到,获得积分10
6秒前
风吹麦浪发布了新的文献求助10
6秒前
Ava应助YUEYUE采纳,获得10
7秒前
猩猩完成签到,获得积分10
8秒前
宽宽完成签到,获得积分10
10秒前
Niar完成签到 ,获得积分10
14秒前
852应助无心的荆采纳,获得10
15秒前
共享精神应助无心的荆采纳,获得10
15秒前
上官若男应助无心的荆采纳,获得30
15秒前
大个应助无心的荆采纳,获得10
16秒前
脑洞疼应助无心的荆采纳,获得10
16秒前
星辰大海应助无心的荆采纳,获得10
16秒前
万能图书馆应助无心的荆采纳,获得10
16秒前
在水一方应助无心的荆采纳,获得10
16秒前
小二郎应助无心的荆采纳,获得10
16秒前
善学以致用应助无心的荆采纳,获得10
16秒前
17秒前
xuedan3000完成签到 ,获得积分10
20秒前
大模型应助无心的荆采纳,获得10
22秒前
田様应助无心的荆采纳,获得10
22秒前
传奇3应助无心的荆采纳,获得10
22秒前
Hello应助无心的荆采纳,获得10
22秒前
JamesPei应助无心的荆采纳,获得30
22秒前
善学以致用应助无心的荆采纳,获得30
22秒前
情怀应助无心的荆采纳,获得10
22秒前
上官若男应助无心的荆采纳,获得10
22秒前
思源应助无心的荆采纳,获得30
23秒前
斯文败类应助无心的荆采纳,获得10
23秒前
24秒前
abc97发布了新的文献求助10
24秒前
山止川行完成签到 ,获得积分10
29秒前
坚强的严青完成签到,获得积分10
30秒前
clock完成签到 ,获得积分10
31秒前
科研通AI2S应助tRNA采纳,获得10
34秒前
chrysan发布了新的文献求助10
35秒前
36秒前
36秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371549
求助须知:如何正确求助?哪些是违规求助? 2989674
关于积分的说明 8736701
捐赠科研通 2672919
什么是DOI,文献DOI怎么找? 1464249
科研通“疑难数据库(出版商)”最低求助积分说明 677484
邀请新用户注册赠送积分活动 668822