Deep Self-Reconstruction Fusion Similarity Hashing for the Diagnosis of Alzheimer's Disease on Multi-Modal Data

计算机科学 模式识别(心理学) 人工智能 散列函数 情态动词 杠杆(统计) 深度学习 计算机安全 高分子化学 化学
作者
Tian-Ru Wu,Cui-Na Jiao,Xinchun Cui,Yanli Wang,Chun-Hou Zheng,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3513-3522 被引量:2
标识
DOI:10.1109/jbhi.2024.3383885
摘要

The pathogenesis of Alzheimer's disease (AD) is extremely intricate, which makes AD patients almost incurable. Recent studies have demonstrated that analyzing multi-modal data can offer a comprehensive perspective on the different stages of AD progression, which is beneficial for early diagnosis of AD. In this paper, we propose a deep self-reconstruction fusion similarity hashing (DS-FSH) method to effectively capture the AD-related biomarkers from the multi-modal data and leverage them to diagnose AD. Given that most existing methods ignore the topological structure of the data, a deep self-reconstruction model based on random walk graph regularization is designed to reconstruct the multi-modal data, thereby learning the nonlinear relationship between samples. Additionally, a fused similarity hash based on anchor graph is proposed to generate discriminative binary hash codes for multi-modal reconstructed data. This allows sample fused similarity to be effectively modeled by a fusion similarity matrix based on anchor graph while modal correlation can be approximated by Hamming distance. Especially, extracted features from the multi-modal data are classified using deep sparse autoencoders classifier. Finally, experiments conduct on the AD Neuroimaging Initiative database show that DS-FSH outperforms comparable methods of AD classification. To conclude, DS-FSH identifies multi-modal features closely associated with AD, which are expected to contribute significantly to understanding of the pathogenesis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
SciGPT应助朴实山兰采纳,获得10
2秒前
T拐拐发布了新的文献求助10
3秒前
3秒前
棋士发布了新的文献求助10
3秒前
4秒前
qqwrv发布了新的文献求助10
4秒前
月眠眠完成签到,获得积分10
5秒前
dachengzi完成签到,获得积分10
6秒前
Lucas应助大神装采纳,获得10
6秒前
flymove发布了新的文献求助10
7秒前
qiaoshan_Jason完成签到,获得积分10
8秒前
Y.J发布了新的文献求助10
8秒前
可罗雀完成签到,获得积分10
8秒前
XXL完成签到,获得积分20
9秒前
汪小喵发布了新的文献求助10
9秒前
自然1111发布了新的文献求助10
9秒前
黄东胜完成签到,获得积分10
11秒前
11秒前
12秒前
打工人发布了新的文献求助10
14秒前
nalan完成签到,获得积分10
14秒前
15秒前
旋转蒸发完成签到,获得积分20
16秒前
wanci应助Y.J采纳,获得10
16秒前
17秒前
丘比特应助月眠眠采纳,获得10
18秒前
超帅连虎完成签到,获得积分10
18秒前
夏夏发布了新的文献求助10
19秒前
20秒前
22秒前
bxyyy应助阿丽阿丽采纳,获得10
23秒前
Huuu完成签到,获得积分10
24秒前
旋转蒸发发布了新的文献求助30
24秒前
一见憘完成签到 ,获得积分10
24秒前
Little2发布了新的文献求助10
25秒前
lalala发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150