亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Self-Reconstruction Fusion Similarity Hashing for the Diagnosis of Alzheimer's Disease on Multi-Modal Data

计算机科学 模式识别(心理学) 人工智能 散列函数 情态动词 杠杆(统计) 深度学习 计算机安全 化学 高分子化学
作者
Tian-Ru Wu,Cui-Na Jiao,Xinchun Cui,Yanli Wang,Chun-Hou Zheng,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3513-3522 被引量:2
标识
DOI:10.1109/jbhi.2024.3383885
摘要

The pathogenesis of Alzheimer's disease (AD) is extremely intricate, which makes AD patients almost incurable. Recent studies have demonstrated that analyzing multi-modal data can offer a comprehensive perspective on the different stages of AD progression, which is beneficial for early diagnosis of AD. In this paper, we propose a deep self-reconstruction fusion similarity hashing (DS-FSH) method to effectively capture the AD-related biomarkers from the multi-modal data and leverage them to diagnose AD. Given that most existing methods ignore the topological structure of the data, a deep self-reconstruction model based on random walk graph regularization is designed to reconstruct the multi-modal data, thereby learning the nonlinear relationship between samples. Additionally, a fused similarity hash based on anchor graph is proposed to generate discriminative binary hash codes for multi-modal reconstructed data. This allows sample fused similarity to be effectively modeled by a fusion similarity matrix based on anchor graph while modal correlation can be approximated by Hamming distance. Especially, extracted features from the multi-modal data are classified using deep sparse autoencoders classifier. Finally, experiments conduct on the AD Neuroimaging Initiative database show that DS-FSH outperforms comparable methods of AD classification. To conclude, DS-FSH identifies multi-modal features closely associated with AD, which are expected to contribute significantly to understanding of the pathogenesis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助JD采纳,获得10
2秒前
usora发布了新的文献求助10
3秒前
3秒前
852应助如意小丸子采纳,获得10
6秒前
6秒前
一粟完成签到 ,获得积分10
7秒前
9秒前
虎啸天123发布了新的文献求助10
10秒前
usora完成签到,获得积分10
10秒前
Aroma完成签到,获得积分10
13秒前
13秒前
苹果安露发布了新的文献求助10
16秒前
16秒前
17秒前
谢傲安发布了新的文献求助10
17秒前
无花果应助璐璐姐最牛逼采纳,获得10
21秒前
王一完成签到,获得积分10
23秒前
23秒前
慕青应助九尾采纳,获得10
25秒前
wang完成签到,获得积分10
25秒前
26秒前
28秒前
现代CC完成签到 ,获得积分10
29秒前
32秒前
33秒前
sissiarno应助科研通管家采纳,获得50
36秒前
852应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
37秒前
打打应助科研通管家采纳,获得10
37秒前
37秒前
李健应助科研通管家采纳,获得10
37秒前
37秒前
李骞发布了新的文献求助10
37秒前
王云云完成签到 ,获得积分10
38秒前
谢傲安完成签到,获得积分20
40秒前
打打应助小王聪明蛋采纳,获得30
41秒前
姜姗完成签到,获得积分10
42秒前
火火火木完成签到 ,获得积分10
42秒前
55秒前
Murphy完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253441
求助须知:如何正确求助?哪些是违规求助? 4416791
关于积分的说明 13750469
捐赠科研通 4289194
什么是DOI,文献DOI怎么找? 2353310
邀请新用户注册赠送积分活动 1350007
关于科研通互助平台的介绍 1309854