Signal processing collaborated with deep learning: An interpretable FIRNet for industrial intelligent diagnosis

信号处理 人工智能 深度学习 计算机科学 信号(编程语言) 工程类 机器学习 模式识别(心理学) 数字信号处理 电子工程 程序设计语言
作者
Rui Liu,Xiaoxi Ding,Shanshan Wu,Qihang Wu,Yimin Shao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:212: 111314-111314 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111314
摘要

Due to the neglect of prior characteristics and the lack of explicit constraints on fault knowledge, conventional intelligent diagnosis methods suffer from great hardships in exacting fault-sensitive information and making explainable decisions, resulting in poor interpretability and inferior robustness. Motivated by the excellent multiscale analysis performance of signal processing and the powerful feature mining ability of deep learning, this study proposes an interpretable FIRNet for equipment intelligent diagnosis under strong noise environments. It consists of a well-crafted FIRLayer and a deep learning backbone. Inspired by the modulation principle that fault-sensitive components are normally modulated into multiscale mode characteristics, multiple ex-ante interpretable filters with two learnable parameters, including center frequency and bandwidth, are analytically designed to process the sequence signal sets, represented as signal-processing-based FIRLayer where the extracted multiscale feature maps are taken as an interpretable status information expression. Subsequently, multiscale convolutional kernels are established to extract the high-level feature maps and further make the final diagnostic decisions, represented as the deep learning backbone. The simulated and experimental results show that the proposed FIRNets have higher identification precision compared to the other nine deep learning models. Specially, three aspects, including model interpretability, noise robustness capacity and edge intelligent diagnosis, are further analyzed to illustrate the interpretable advantages of FIRNets. Hereinto, feature visualizations of the FIRLayer and mode decision contributions of the deep learning backbone are in-depth analyzed to verify the interpretable feature representation and decision-making principle of FIRNets. The results indicate that FIRNets have superior ex-post interpretability compared to other methods. Focusing on industrial practices, an efficient edge diagnosis system based on a pruned FIRNet is established, and an online diagnosis accuracy of more than 99% has been achieved. It can be foreseen that the proposed FIRNets show great potential and competitiveness to promote the edge computing application of equipment intelligent diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助爱笑笑采纳,获得10
刚刚
巫马夜安完成签到,获得积分10
刚刚
Han发布了新的文献求助10
刚刚
研友_LBKR9n发布了新的文献求助10
1秒前
小蘑菇应助iris采纳,获得10
1秒前
Cici发布了新的文献求助10
2秒前
nike完成签到,获得积分10
2秒前
ytshen3124完成签到,获得积分10
2秒前
Rustaring发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
hzx完成签到,获得积分10
3秒前
3秒前
Jessie完成签到,获得积分10
3秒前
4秒前
4秒前
super完成签到,获得积分10
4秒前
5秒前
田様应助程雯慧采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
典雅碧空应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
6秒前
科研通AI2S应助liuxian采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
ll应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得30
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
典雅碧空应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970724
求助须知:如何正确求助?哪些是违规求助? 3515419
关于积分的说明 11178342
捐赠科研通 3250592
什么是DOI,文献DOI怎么找? 1795372
邀请新用户注册赠送积分活动 875802
科研通“疑难数据库(出版商)”最低求助积分说明 805181