Signal processing collaborated with deep learning: An interpretable FIRNet for industrial intelligent diagnosis

信号处理 人工智能 深度学习 计算机科学 信号(编程语言) 工程类 机器学习 模式识别(心理学) 数字信号处理 电子工程 程序设计语言
作者
Rui Liu,Xiaoxi Ding,Shanshan Wu,Qihang Wu,Yimin Shao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:212: 111314-111314 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111314
摘要

Due to the neglect of prior characteristics and the lack of explicit constraints on fault knowledge, conventional intelligent diagnosis methods suffer from great hardships in exacting fault-sensitive information and making explainable decisions, resulting in poor interpretability and inferior robustness. Motivated by the excellent multiscale analysis performance of signal processing and the powerful feature mining ability of deep learning, this study proposes an interpretable FIRNet for equipment intelligent diagnosis under strong noise environments. It consists of a well-crafted FIRLayer and a deep learning backbone. Inspired by the modulation principle that fault-sensitive components are normally modulated into multiscale mode characteristics, multiple ex-ante interpretable filters with two learnable parameters, including center frequency and bandwidth, are analytically designed to process the sequence signal sets, represented as signal-processing-based FIRLayer where the extracted multiscale feature maps are taken as an interpretable status information expression. Subsequently, multiscale convolutional kernels are established to extract the high-level feature maps and further make the final diagnostic decisions, represented as the deep learning backbone. The simulated and experimental results show that the proposed FIRNets have higher identification precision compared to the other nine deep learning models. Specially, three aspects, including model interpretability, noise robustness capacity and edge intelligent diagnosis, are further analyzed to illustrate the interpretable advantages of FIRNets. Hereinto, feature visualizations of the FIRLayer and mode decision contributions of the deep learning backbone are in-depth analyzed to verify the interpretable feature representation and decision-making principle of FIRNets. The results indicate that FIRNets have superior ex-post interpretability compared to other methods. Focusing on industrial practices, an efficient edge diagnosis system based on a pruned FIRNet is established, and an online diagnosis accuracy of more than 99% has been achieved. It can be foreseen that the proposed FIRNets show great potential and competitiveness to promote the edge computing application of equipment intelligent diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofengche完成签到,获得积分10
1秒前
BZPL发布了新的文献求助10
1秒前
jiangyu_an完成签到,获得积分10
1秒前
平淡如天发布了新的文献求助10
1秒前
1秒前
1秒前
石时时完成签到,获得积分10
2秒前
李健的小迷弟应助wenjing采纳,获得10
3秒前
4秒前
糕糕发布了新的文献求助10
4秒前
Owen应助jess采纳,获得10
4秒前
learnerZ_2023完成签到,获得积分10
5秒前
彭于晏应助hohn采纳,获得10
5秒前
领导范儿应助Mong那粒沙采纳,获得10
5秒前
5秒前
5秒前
5秒前
haha发布了新的文献求助10
6秒前
充电宝应助虚幻元芹采纳,获得10
6秒前
ZYH完成签到,获得积分10
6秒前
6秒前
7秒前
活泼沛菡完成签到,获得积分20
7秒前
advance完成签到,获得积分10
7秒前
7秒前
传奇3应助永恒采纳,获得10
7秒前
科研通AI5应助UNIQ85采纳,获得10
7秒前
眭超阳完成签到 ,获得积分10
8秒前
king_creole完成签到,获得积分10
8秒前
cpli发布了新的文献求助30
8秒前
白河发布了新的文献求助10
8秒前
wjl发布了新的文献求助10
8秒前
8秒前
zsy完成签到,获得积分10
8秒前
情怀应助Mine采纳,获得10
8秒前
8秒前
漂亮采波发布了新的文献求助10
9秒前
康康发布了新的文献求助10
9秒前
ZYH发布了新的文献求助10
9秒前
石会发发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560552
求助须知:如何正确求助?哪些是违规求助? 3986658
关于积分的说明 12343469
捐赠科研通 3657426
什么是DOI,文献DOI怎么找? 2014919
邀请新用户注册赠送积分活动 1049681
科研通“疑难数据库(出版商)”最低求助积分说明 937867