Signal processing collaborated with deep learning: An interpretable FIRNet for industrial intelligent diagnosis

信号处理 人工智能 深度学习 计算机科学 信号(编程语言) 工程类 机器学习 模式识别(心理学) 数字信号处理 电子工程 程序设计语言
作者
Rui Liu,Xiaoxi Ding,Shanshan Wu,Qihang Wu,Yimin Shao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:212: 111314-111314 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111314
摘要

Due to the neglect of prior characteristics and the lack of explicit constraints on fault knowledge, conventional intelligent diagnosis methods suffer from great hardships in exacting fault-sensitive information and making explainable decisions, resulting in poor interpretability and inferior robustness. Motivated by the excellent multiscale analysis performance of signal processing and the powerful feature mining ability of deep learning, this study proposes an interpretable FIRNet for equipment intelligent diagnosis under strong noise environments. It consists of a well-crafted FIRLayer and a deep learning backbone. Inspired by the modulation principle that fault-sensitive components are normally modulated into multiscale mode characteristics, multiple ex-ante interpretable filters with two learnable parameters, including center frequency and bandwidth, are analytically designed to process the sequence signal sets, represented as signal-processing-based FIRLayer where the extracted multiscale feature maps are taken as an interpretable status information expression. Subsequently, multiscale convolutional kernels are established to extract the high-level feature maps and further make the final diagnostic decisions, represented as the deep learning backbone. The simulated and experimental results show that the proposed FIRNets have higher identification precision compared to the other nine deep learning models. Specially, three aspects, including model interpretability, noise robustness capacity and edge intelligent diagnosis, are further analyzed to illustrate the interpretable advantages of FIRNets. Hereinto, feature visualizations of the FIRLayer and mode decision contributions of the deep learning backbone are in-depth analyzed to verify the interpretable feature representation and decision-making principle of FIRNets. The results indicate that FIRNets have superior ex-post interpretability compared to other methods. Focusing on industrial practices, an efficient edge diagnosis system based on a pruned FIRNet is established, and an online diagnosis accuracy of more than 99% has been achieved. It can be foreseen that the proposed FIRNets show great potential and competitiveness to promote the edge computing application of equipment intelligent diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡雯完成签到,获得积分10
3秒前
3秒前
yangminghan发布了新的文献求助10
4秒前
66发布了新的文献求助10
5秒前
acetdw发布了新的文献求助10
8秒前
大个应助yangminghan采纳,获得10
10秒前
11秒前
山后别相逢完成签到 ,获得积分10
15秒前
康康发布了新的文献求助10
18秒前
潇洒的小鸽子完成签到 ,获得积分0
18秒前
19秒前
111咩咩完成签到,获得积分10
21秒前
英姑应助66采纳,获得10
21秒前
英勇的初柔完成签到,获得积分20
21秒前
23秒前
ZMY发布了新的文献求助10
23秒前
24秒前
彩色的中蓝完成签到,获得积分20
26秒前
大模型应助清逸采纳,获得10
27秒前
兴奋雁蓉完成签到,获得积分10
28秒前
哆啦梦完成签到,获得积分10
28秒前
想不出来完成签到 ,获得积分10
28秒前
JamesPei应助康康采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得30
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516