Signal processing collaborated with deep learning: An interpretable FIRNet for industrial intelligent diagnosis

信号处理 人工智能 深度学习 计算机科学 信号(编程语言) 工程类 机器学习 模式识别(心理学) 数字信号处理 电子工程 程序设计语言
作者
Rui Liu,Xiaoxi Ding,Shanshan Wu,Qihang Wu,Yimin Shao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:212: 111314-111314 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111314
摘要

Due to the neglect of prior characteristics and the lack of explicit constraints on fault knowledge, conventional intelligent diagnosis methods suffer from great hardships in exacting fault-sensitive information and making explainable decisions, resulting in poor interpretability and inferior robustness. Motivated by the excellent multiscale analysis performance of signal processing and the powerful feature mining ability of deep learning, this study proposes an interpretable FIRNet for equipment intelligent diagnosis under strong noise environments. It consists of a well-crafted FIRLayer and a deep learning backbone. Inspired by the modulation principle that fault-sensitive components are normally modulated into multiscale mode characteristics, multiple ex-ante interpretable filters with two learnable parameters, including center frequency and bandwidth, are analytically designed to process the sequence signal sets, represented as signal-processing-based FIRLayer where the extracted multiscale feature maps are taken as an interpretable status information expression. Subsequently, multiscale convolutional kernels are established to extract the high-level feature maps and further make the final diagnostic decisions, represented as the deep learning backbone. The simulated and experimental results show that the proposed FIRNets have higher identification precision compared to the other nine deep learning models. Specially, three aspects, including model interpretability, noise robustness capacity and edge intelligent diagnosis, are further analyzed to illustrate the interpretable advantages of FIRNets. Hereinto, feature visualizations of the FIRLayer and mode decision contributions of the deep learning backbone are in-depth analyzed to verify the interpretable feature representation and decision-making principle of FIRNets. The results indicate that FIRNets have superior ex-post interpretability compared to other methods. Focusing on industrial practices, an efficient edge diagnosis system based on a pruned FIRNet is established, and an online diagnosis accuracy of more than 99% has been achieved. It can be foreseen that the proposed FIRNets show great potential and competitiveness to promote the edge computing application of equipment intelligent diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼跃发布了新的文献求助10
2秒前
临猗下大雨完成签到,获得积分10
2秒前
科研通AI2S应助renren采纳,获得10
2秒前
难过的面包完成签到,获得积分20
3秒前
3秒前
4秒前
blush完成签到,获得积分10
4秒前
4秒前
CodeCraft应助甜甜谷波采纳,获得10
5秒前
sakris完成签到 ,获得积分10
5秒前
怡然太阳发布了新的文献求助10
5秒前
blush发布了新的文献求助10
8秒前
9秒前
9秒前
桐桐应助甜甜亦丝采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
鱼鱼完成签到 ,获得积分10
12秒前
14秒前
汉堡包应助人间不清醒采纳,获得10
15秒前
香蕉觅云应助林途采纳,获得10
16秒前
coco发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
fifteen应助我们太久没见了采纳,获得10
19秒前
21秒前
kunny完成签到 ,获得积分10
22秒前
23秒前
科研通AI6应助qi采纳,获得30
23秒前
24秒前
尧风完成签到 ,获得积分10
24秒前
24秒前
25秒前
火之高兴完成签到,获得积分10
25秒前
动听千风完成签到,获得积分10
26秒前
快乐小狗发布了新的文献求助10
26秒前
无情颖完成签到 ,获得积分10
27秒前
甜甜亦丝发布了新的文献求助10
28秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971