Adaptive Fourier Convolution Network for Road Segmentation in Remote Sensing Images

卷积(计算机科学) 计算机科学 遥感 分割 图像分割 计算机视觉 人工智能 傅里叶变换 地质学 人工神经网络 数学 数学分析
作者
Huajun Liu,Cailing Wang,Jinding Zhao,Suting Chen,Hui Kong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3384059
摘要

Segmentation of roads in remote sensing images is a challenging task due to the inhomogeneous intensity, non-consistent contrast, and very cluttered background in remote sensing images. Recent approaches, mostly relying on convolutions or self-attention, make it difficult to extract weak and continuous road objects. Fourier neural operators provide another novel mechanism for capturing long-range and fine-grained features beyond self-attention. Based on it, we propose an adaptive Fourier convolution network (AFCNet) on the spatial-spectral domain for road segmentation in this paper. The AFCNet is built on the pipeline of the classical U-Net model and its core is the proposed Fourier neural encoder (FNE), which is built on a feed-forward layer and a flexible Fourier convolutional structure composed of Fourier-domain pooling layers, asymmetric convolutions, squeeze-excitation inspired self-attention and adaptive multiscale fusion layers. Furthermore, we combine the FNE and bottleneck in ResNet to form a hybrid global-local feature representation scheme to capture the long and weak road objects in remote sensing images. The experiments on two public datasets, the Massachusetts Roads and DeepGlobe Road Datasets, have shown that AFCNet worked with fewer parameters and outperformed most previous methods in terms of accuracy, precision, recall, and mean intersection over union (mIoU), etc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu完成签到,获得积分10
刚刚
光亮的胡萝卜完成签到,获得积分10
刚刚
dream177777发布了新的文献求助10
1秒前
水怪啊发布了新的文献求助10
3秒前
sunflower完成签到,获得积分10
3秒前
4秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
自觉一德发布了新的文献求助10
5秒前
wang洁发布了新的文献求助30
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
GKING发布了新的文献求助10
8秒前
英姑应助龙城小坏蛋采纳,获得10
8秒前
9秒前
曦耀发布了新的文献求助10
9秒前
xixi发布了新的文献求助10
11秒前
完美世界应助优雅老六采纳,获得10
12秒前
李健的小迷弟应助David采纳,获得10
12秒前
k_1发布了新的文献求助10
12秒前
星辰大海应助知性的夏之采纳,获得10
13秒前
Mandy完成签到,获得积分10
13秒前
13秒前
香蕉觅云应助YUMI采纳,获得10
13秒前
水怪啊完成签到,获得积分10
15秒前
小米完成签到,获得积分10
16秒前
杨德凯完成签到,获得积分10
16秒前
17秒前
喈喈青鸟完成签到,获得积分10
19秒前
MoLing发布了新的文献求助10
19秒前
20秒前
Owen应助大气小土豆采纳,获得10
20秒前
21秒前
21秒前
香蕉觅云应助GKING采纳,获得10
21秒前
21秒前
22秒前
23秒前
上官若男应助愿景采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548