Sharing instant delivery UAVs for crowdsensing: A data-driven performance study

即时 计算机科学 拥挤感测 实时计算 异常检测 集合(抽象数据类型) 运筹学 数据挖掘 数据科学 工程类 物理 量子力学 程序设计语言
作者
Junhui Gao,Yan Pan,Xin Zhang,Qingye Han,Yujiao Hu
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:191: 110100-110100 被引量:1
标识
DOI:10.1016/j.cie.2024.110100
摘要

In recent years, there has been a significant increase in demand for instant deliveries, such as rapid delivery of takeaway food and medicine. Many logistics companies are planning to realize real-time delivery services through unmanned aerial vehicles (UAVs). However, costs of running such an autonomous delivery system are too expensive. Fortunately, urban management departments (UMD) that are responsible for monitoring urban environments have the intentions to cooperate with external companies and design crowdsensing methods, so that the duty can be ensured in an autonomous and low-cost method. Motivated by this, instant delivery UAVs are introduced into crowdsensing, so that UAVs can earn additional money for logistics companies while ensuring priority completion of instant deliveries, as well as provide environmental monitoring data to UMD. To be specific, some challenges are firstly identified to combine these two tasks based on real-world data in China. Then a set of data-driven UAVs sharing algorithms is proposed to achieve sensing for urban POIs (Points of Interest) and urban anomaly events. The results of simulations based on real-world datasets demonstrate the efficiency of our methods. The average sensing interval of the POIs within a 368.64πkm2 area can be only ≈2.6min. more than 81% of stochastic events are successfully predicted, over 84% (401 out of 476) of events are successfully sensed, and 60% of events have a UAV to arrive within 6.65min of their occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hx完成签到,获得积分10
刚刚
汉堡包应助guojingjing采纳,获得10
3秒前
连糜完成签到 ,获得积分10
3秒前
3秒前
3秒前
Demons完成签到,获得积分10
4秒前
5秒前
lgh完成签到,获得积分10
5秒前
sakurai完成签到,获得积分10
5秒前
Xl完成签到,获得积分10
6秒前
7秒前
天真依玉完成签到,获得积分10
7秒前
重要的溪流完成签到,获得积分10
7秒前
海洋完成签到,获得积分10
7秒前
和谐初南完成签到 ,获得积分10
7秒前
英俊亦巧完成签到,获得积分10
8秒前
笑一笑完成签到,获得积分10
8秒前
Yiling完成签到,获得积分10
8秒前
Kerouer完成签到 ,获得积分10
9秒前
卓若之完成签到 ,获得积分10
9秒前
科研通AI5应助炙热的平灵采纳,获得10
10秒前
11秒前
沉静的红酒完成签到,获得积分10
11秒前
DONNYTIO完成签到,获得积分10
11秒前
乔qiao完成签到,获得积分10
12秒前
83366完成签到,获得积分10
12秒前
小满完成签到,获得积分10
12秒前
伶俐的飞鸟完成签到 ,获得积分10
12秒前
hanshishengye完成签到 ,获得积分10
14秒前
charm完成签到,获得积分10
14秒前
Mr.Jian完成签到,获得积分10
14秒前
Ling完成签到,获得积分10
15秒前
Miya_han完成签到,获得积分10
15秒前
端庄的魔镜完成签到 ,获得积分10
15秒前
广旭完成签到 ,获得积分10
16秒前
木子完成签到,获得积分10
16秒前
Stellar777发布了新的文献求助10
17秒前
COCO完成签到,获得积分10
17秒前
YC完成签到,获得积分10
17秒前
文承龙完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890