Sharing instant delivery UAVs for crowdsensing: A data-driven performance study

即时 计算机科学 拥挤感测 实时计算 异常检测 集合(抽象数据类型) 运筹学 数据挖掘 数据科学 工程类 物理 量子力学 程序设计语言
作者
Junhui Gao,Yan Pan,Xin Zhang,Qingye Han,Yujiao Hu
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:191: 110100-110100 被引量:1
标识
DOI:10.1016/j.cie.2024.110100
摘要

In recent years, there has been a significant increase in demand for instant deliveries, such as rapid delivery of takeaway food and medicine. Many logistics companies are planning to realize real-time delivery services through unmanned aerial vehicles (UAVs). However, costs of running such an autonomous delivery system are too expensive. Fortunately, urban management departments (UMD) that are responsible for monitoring urban environments have the intentions to cooperate with external companies and design crowdsensing methods, so that the duty can be ensured in an autonomous and low-cost method. Motivated by this, instant delivery UAVs are introduced into crowdsensing, so that UAVs can earn additional money for logistics companies while ensuring priority completion of instant deliveries, as well as provide environmental monitoring data to UMD. To be specific, some challenges are firstly identified to combine these two tasks based on real-world data in China. Then a set of data-driven UAVs sharing algorithms is proposed to achieve sensing for urban POIs (Points of Interest) and urban anomaly events. The results of simulations based on real-world datasets demonstrate the efficiency of our methods. The average sensing interval of the POIs within a 368.64πkm2 area can be only ≈2.6min. more than 81% of stochastic events are successfully predicted, over 84% (401 out of 476) of events are successfully sensed, and 60% of events have a UAV to arrive within 6.65min of their occurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助yuefeng采纳,获得10
刚刚
务实荧荧完成签到 ,获得积分10
2秒前
凶狠的妙柏完成签到,获得积分10
3秒前
5秒前
6秒前
hou发布了新的文献求助10
6秒前
泽丶完成签到,获得积分10
7秒前
松子完成签到,获得积分10
8秒前
8秒前
科研通AI5应助细心的幼南采纳,获得10
8秒前
9秒前
zho发布了新的文献求助10
11秒前
12秒前
13秒前
泡芙发布了新的文献求助10
13秒前
15秒前
Esang发布了新的文献求助10
16秒前
djs完成签到 ,获得积分10
17秒前
23完成签到,获得积分10
18秒前
脑洞疼应助还单身的绮梅采纳,获得10
18秒前
所所应助俭朴的猫咪采纳,获得10
18秒前
FashionBoy应助wangdunli采纳,获得10
19秒前
Esang完成签到,获得积分10
20秒前
20秒前
笑点低中心完成签到,获得积分10
21秒前
沙拉依丁发布了新的文献求助10
21秒前
22秒前
23秒前
wxs完成签到,获得积分20
24秒前
干净的人达完成签到 ,获得积分10
25秒前
26秒前
秀丽不斜发布了新的文献求助10
26秒前
27秒前
28秒前
wxs发布了新的文献求助10
28秒前
Enomama发布了新的文献求助10
29秒前
30秒前
JinjiKikk0发布了新的文献求助10
30秒前
GHL发布了新的文献求助10
30秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985