Machine learning backpropagation network analysis of permeability, Forchheimer coefficient, and effective thermal conductivity of macroporous foam–fluid systems

热导率 材料科学 多孔性 磁导率 多孔介质 反向传播 热的 传质 传热 机械 热力学 复合材料 人工神经网络 计算机科学 化学 物理 生物化学 机器学习
作者
A.J. Otaru,Manase Auta
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:201: 109039-109039
标识
DOI:10.1016/j.ijthermalsci.2024.109039
摘要

Macroporous materials exhibit outstanding properties in heat and mass transfer due to their high pore volume, high surface area, and high Young's modulus. Consequently, understanding their thermofluidic properties is crucial in the design, synthesis, and optimal application of these materials. Therefore, this study, premieres, the use of a machine learning (ML) backpropagation network to develop and train a series of datasets for permeability, Forchheimer coefficient, and effective thermal conductivity of variable macroporous foam–fluid systems with respect to degrees of interstices, fluid and solid properties. To account for permeability values for flowing fluids in the Darcy regime, numerical simulations of slow–moving fluids were implemented over the materials' interstices. In comparison to similarly substantiated values of permeability in the Forchheimer regime, these values were a bit lower. The ML-based backpropagation algorithm was used to analyze data, which produced predictions (output signals) that are more than 90 % in correlation to CFD datasets. This provided insight into the effect of porosity and reduced mean pore openings on macroporous structures' thermofluidic behaviour. Material porosity was observed to play a dominant role in estimating Forchheimer coefficients and effective thermal conductivities for these foam-fluid systems. However, reduced mean pore openings were observed to be more critical for estimating permeability. The contributory effects of reduced mean pore openings on the effective thermal conductivity for these macroporous foam–fluid systems were determined to vary between 5.8 and 13.2 percent. Furthermore, the effective thermal conductivity of macroporous foam–fluid systems was also evaluated in relation to changes in the interstitial fluid and solid matrix thermal conductivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿尉完成签到 ,获得积分10
刚刚
小蘑菇应助linlin采纳,获得10
刚刚
向阳花完成签到 ,获得积分10
2秒前
TiY完成签到 ,获得积分10
4秒前
5秒前
思源应助闪闪航空采纳,获得10
7秒前
NEW完成签到,获得积分10
7秒前
8秒前
清脆乐曲发布了新的文献求助10
9秒前
夜草完成签到,获得积分10
9秒前
sssshhh发布了新的文献求助10
11秒前
12秒前
orixero应助谨慎的擎宇采纳,获得10
12秒前
13秒前
13秒前
上官若男应助Wqian采纳,获得10
13秒前
闪闪航空发布了新的文献求助10
18秒前
linlin发布了新的文献求助10
19秒前
HB发布了新的文献求助10
19秒前
清脆乐曲完成签到,获得积分10
20秒前
felix发布了新的文献求助10
21秒前
科研通AI6应助sssshhh采纳,获得10
22秒前
lucygaga完成签到 ,获得积分10
24秒前
25秒前
25秒前
科研通AI6应助Xjx6519采纳,获得20
25秒前
魔幻冰棍发布了新的文献求助10
27秒前
BowieHuang应助白白采纳,获得10
27秒前
mirrovo完成签到 ,获得积分10
27秒前
自然的平蓝完成签到,获得积分10
29秒前
深情安青应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
Linos应助科研通管家采纳,获得10
31秒前
蓝天应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
蓝天应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614