Machine learning backpropagation network analysis of permeability, Forchheimer coefficient, and effective thermal conductivity of macroporous foam–fluid systems

热导率 材料科学 多孔性 磁导率 多孔介质 反向传播 热的 传质 传热 机械 热力学 复合材料 人工神经网络 计算机科学 化学 物理 生物化学 机器学习
作者
A.J. Otaru,Manase Auta
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:201: 109039-109039
标识
DOI:10.1016/j.ijthermalsci.2024.109039
摘要

Macroporous materials exhibit outstanding properties in heat and mass transfer due to their high pore volume, high surface area, and high Young's modulus. Consequently, understanding their thermofluidic properties is crucial in the design, synthesis, and optimal application of these materials. Therefore, this study, premieres, the use of a machine learning (ML) backpropagation network to develop and train a series of datasets for permeability, Forchheimer coefficient, and effective thermal conductivity of variable macroporous foam–fluid systems with respect to degrees of interstices, fluid and solid properties. To account for permeability values for flowing fluids in the Darcy regime, numerical simulations of slow–moving fluids were implemented over the materials' interstices. In comparison to similarly substantiated values of permeability in the Forchheimer regime, these values were a bit lower. The ML-based backpropagation algorithm was used to analyze data, which produced predictions (output signals) that are more than 90 % in correlation to CFD datasets. This provided insight into the effect of porosity and reduced mean pore openings on macroporous structures' thermofluidic behaviour. Material porosity was observed to play a dominant role in estimating Forchheimer coefficients and effective thermal conductivities for these foam-fluid systems. However, reduced mean pore openings were observed to be more critical for estimating permeability. The contributory effects of reduced mean pore openings on the effective thermal conductivity for these macroporous foam–fluid systems were determined to vary between 5.8 and 13.2 percent. Furthermore, the effective thermal conductivity of macroporous foam–fluid systems was also evaluated in relation to changes in the interstitial fluid and solid matrix thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫一盒完成签到,获得积分10
1秒前
只想发财发布了新的文献求助10
1秒前
roger应助Zex采纳,获得10
1秒前
3秒前
猫一盒发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
甜甜的向卉完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
淡淡的若冰应助浅尝离白采纳,获得10
11秒前
淡淡的若冰应助浅尝离白采纳,获得10
11秒前
220103应助浅尝离白采纳,获得10
11秒前
李爱国应助浅尝离白采纳,获得10
11秒前
小紫发布了新的文献求助10
11秒前
宇月幸成发布了新的文献求助10
12秒前
天天快乐应助小张采纳,获得10
13秒前
surgeon10发布了新的文献求助10
13秒前
CR7发布了新的文献求助10
14秒前
超级雍发布了新的文献求助10
14秒前
15秒前
Maps发布了新的文献求助10
15秒前
醉翁完成签到,获得积分10
18秒前
橘子海发布了新的文献求助10
19秒前
19秒前
啦啦啦啦啦完成签到,获得积分10
19秒前
CR7完成签到,获得积分10
20秒前
羞涩的妙菱完成签到,获得积分10
22秒前
小熊童话书完成签到,获得积分10
22秒前
浮云完成签到,获得积分10
23秒前
25秒前
科研通AI2S应助橘子海采纳,获得10
26秒前
暂时想不到昵称完成签到,获得积分10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222497
求助须知:如何正确求助?哪些是违规求助? 2871136
关于积分的说明 8174143
捐赠科研通 2538111
什么是DOI,文献DOI怎么找? 1370336
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619564