Machine learning backpropagation network analysis of permeability, Forchheimer coefficient, and effective thermal conductivity of macroporous foam–fluid systems

热导率 材料科学 多孔性 磁导率 多孔介质 反向传播 热的 传质 传热 机械 热力学 复合材料 人工神经网络 计算机科学 化学 物理 生物化学 机器学习
作者
A.J. Otaru,Manase Auta
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:201: 109039-109039
标识
DOI:10.1016/j.ijthermalsci.2024.109039
摘要

Macroporous materials exhibit outstanding properties in heat and mass transfer due to their high pore volume, high surface area, and high Young's modulus. Consequently, understanding their thermofluidic properties is crucial in the design, synthesis, and optimal application of these materials. Therefore, this study, premieres, the use of a machine learning (ML) backpropagation network to develop and train a series of datasets for permeability, Forchheimer coefficient, and effective thermal conductivity of variable macroporous foam–fluid systems with respect to degrees of interstices, fluid and solid properties. To account for permeability values for flowing fluids in the Darcy regime, numerical simulations of slow–moving fluids were implemented over the materials' interstices. In comparison to similarly substantiated values of permeability in the Forchheimer regime, these values were a bit lower. The ML-based backpropagation algorithm was used to analyze data, which produced predictions (output signals) that are more than 90 % in correlation to CFD datasets. This provided insight into the effect of porosity and reduced mean pore openings on macroporous structures' thermofluidic behaviour. Material porosity was observed to play a dominant role in estimating Forchheimer coefficients and effective thermal conductivities for these foam-fluid systems. However, reduced mean pore openings were observed to be more critical for estimating permeability. The contributory effects of reduced mean pore openings on the effective thermal conductivity for these macroporous foam–fluid systems were determined to vary between 5.8 and 13.2 percent. Furthermore, the effective thermal conductivity of macroporous foam–fluid systems was also evaluated in relation to changes in the interstitial fluid and solid matrix thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助9℃采纳,获得10
刚刚
Raymond完成签到,获得积分0
1秒前
鱼雷发布了新的文献求助10
1秒前
甜蜜秋蝶发布了新的文献求助10
1秒前
ysl发布了新的文献求助30
1秒前
yyy完成签到,获得积分10
1秒前
1秒前
自信的伊发布了新的文献求助10
2秒前
Stanley发布了新的文献求助10
2秒前
wang发布了新的文献求助10
2秒前
2秒前
大鹏发布了新的文献求助50
2秒前
丘比特应助艺玲采纳,获得10
2秒前
hobowei发布了新的文献求助10
3秒前
梦里见陈情完成签到,获得积分10
3秒前
JJJ应助szh123采纳,获得10
3秒前
FFFFFFF应助细腻沅采纳,获得10
3秒前
ym发布了新的文献求助10
3秒前
Yn完成签到 ,获得积分10
4秒前
4秒前
秋季完成签到,获得积分10
5秒前
wwb完成签到,获得积分10
5秒前
张自信完成签到,获得积分10
6秒前
华仔应助VDC采纳,获得10
6秒前
嘟嘟完成签到,获得积分10
7秒前
卡卡完成签到,获得积分10
7秒前
7秒前
十三发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
甩看文献发布了新的文献求助10
8秒前
wang完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
LONG完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762