Machine learning backpropagation network analysis of permeability, Forchheimer coefficient, and effective thermal conductivity of macroporous foam–fluid systems

热导率 材料科学 多孔性 磁导率 多孔介质 反向传播 热的 传质 传热 机械 热力学 复合材料 人工神经网络 计算机科学 化学 物理 生物化学 机器学习
作者
A.J. Otaru,Manase Auta
出处
期刊:International Journal of Thermal Sciences [Elsevier BV]
卷期号:201: 109039-109039
标识
DOI:10.1016/j.ijthermalsci.2024.109039
摘要

Macroporous materials exhibit outstanding properties in heat and mass transfer due to their high pore volume, high surface area, and high Young's modulus. Consequently, understanding their thermofluidic properties is crucial in the design, synthesis, and optimal application of these materials. Therefore, this study, premieres, the use of a machine learning (ML) backpropagation network to develop and train a series of datasets for permeability, Forchheimer coefficient, and effective thermal conductivity of variable macroporous foam–fluid systems with respect to degrees of interstices, fluid and solid properties. To account for permeability values for flowing fluids in the Darcy regime, numerical simulations of slow–moving fluids were implemented over the materials' interstices. In comparison to similarly substantiated values of permeability in the Forchheimer regime, these values were a bit lower. The ML-based backpropagation algorithm was used to analyze data, which produced predictions (output signals) that are more than 90 % in correlation to CFD datasets. This provided insight into the effect of porosity and reduced mean pore openings on macroporous structures' thermofluidic behaviour. Material porosity was observed to play a dominant role in estimating Forchheimer coefficients and effective thermal conductivities for these foam-fluid systems. However, reduced mean pore openings were observed to be more critical for estimating permeability. The contributory effects of reduced mean pore openings on the effective thermal conductivity for these macroporous foam–fluid systems were determined to vary between 5.8 and 13.2 percent. Furthermore, the effective thermal conductivity of macroporous foam–fluid systems was also evaluated in relation to changes in the interstitial fluid and solid matrix thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sandse7en完成签到 ,获得积分10
1秒前
热心的银耳汤完成签到 ,获得积分10
1秒前
jasmime完成签到,获得积分10
1秒前
外向半梅完成签到,获得积分10
2秒前
Bruce完成签到,获得积分10
2秒前
2秒前
个性的夜天完成签到,获得积分10
3秒前
许鸽完成签到,获得积分10
3秒前
青年甘蔗发布了新的文献求助10
4秒前
cuddly完成签到 ,获得积分10
4秒前
lihn完成签到,获得积分10
4秒前
负责冰海完成签到,获得积分10
4秒前
JJJJJJ完成签到,获得积分10
5秒前
6秒前
6秒前
浩铭完成签到,获得积分10
6秒前
6秒前
7秒前
lsyt发布了新的文献求助50
7秒前
JiaJiaQing完成签到,获得积分10
8秒前
ding应助qq采纳,获得10
8秒前
大亮完成签到 ,获得积分10
8秒前
叮当的猫完成签到,获得积分10
8秒前
邰猫猫完成签到,获得积分20
9秒前
duckweedyan完成签到,获得积分10
10秒前
LIUjun完成签到,获得积分10
10秒前
10秒前
星辰大海应助justonce采纳,获得10
10秒前
CodeCraft应助yjzzz采纳,获得10
10秒前
你的风筝完成签到,获得积分10
10秒前
11秒前
逝月发布了新的文献求助200
11秒前
11秒前
WWWUBING发布了新的文献求助20
12秒前
玛琪玛小姐的狗完成签到,获得积分10
12秒前
JiaJiaQing发布了新的文献求助10
12秒前
风华完成签到,获得积分10
12秒前
zhangfan发布了新的文献求助10
13秒前
彦卿完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044