CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients

接收机工作特性 支持向量机 逻辑回归 随机森林 决策树 人工智能 试验装置 膀胱癌 计算机科学 人口 交叉验证 医学 癌症 机器学习 统计 内科学 数学 环境卫生
作者
Ying Cao,Hongyu Zhu,Zhenkai Li,Canyu Liu,Juan Ye
出处
期刊:Academic Radiology [Elsevier]
被引量:1
标识
DOI:10.1016/j.acra.2024.02.047
摘要

Rationale and Objectives

The role of Programmed death-ligand 1 (PD-L1) expression is crucial in guiding immunotherapy selection. This study aims to develop and evaluate a radiomic model, leveraging Computed Tomography (CT) imaging, with the objective of predicting PD-L1 expression status in patients afflicted with bladder cancer.

Materials and Methods

The study encompassed 183 subjects diagnosed with histologically confirmed bladder cancer, among which the PD-L1(+) cohort constituted 60.1% of the total population. Stratified random sampling was utilized at a 7:3 ratio. We employed five diverse machine learning algorithms—Decision Tree, Random Forest, Linear Support Vector Classification, Support Vector Machine, and Logistic Regression—to establish radiomic models on the training dataset. These models endeavored to predict PD-L1 expression status premised on radiomic features derived from region-of-interest segmentation. Subsequent to this, the predictive performance of these models was examined on a validation set employing the receiver operating characteristic (ROC) curve. The DeLong test was utilized to contrast ROC curves, thereby pinpointing the model with superior predictive accuracy.

Results

16 features were chosen for the model construction. All five models revealed strong performance in the training set (AUC, 0.920–1) and commendable predictive ability in the validation set (AUC, 0.753–0.766). As per the DeLong test, no statistically significant disparities were observed among any of the models (P > 0.05) in the validation set. Additional verification through the calibration curve and decision curve analysis indicated that the Logistic Regression model exhibited extraordinary precision and practicality.

Conclusion

Our machine learning model, grounded on radiomic features, demonstrated its proficiency in accurately distinguishing bladder cancer patients with high PD-L1 expression. Future research, incorporating more exhaustive datasets, could potentially augment the predictive efficiency of radiomic algorithms, thereby advancing their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南国梦发布了新的文献求助10
刚刚
Abdory发布了新的文献求助10
3秒前
黄新绒完成签到 ,获得积分10
3秒前
3秒前
乐乐应助T拐拐采纳,获得10
4秒前
smile完成签到,获得积分10
6秒前
羊羊发布了新的文献求助30
8秒前
木质素爱好者关注了科研通微信公众号
9秒前
嗯哼举报阔达的天晴求助涉嫌违规
10秒前
11秒前
LARS应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得20
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
隐形曼青应助kirirto采纳,获得10
15秒前
高艳慧发布了新的文献求助10
16秒前
T拐拐发布了新的文献求助10
16秒前
啦啦啦给啦啦啦的求助进行了留言
19秒前
研研研完成签到,获得积分10
22秒前
Hyacinth完成签到 ,获得积分10
25秒前
琦琦完成签到,获得积分10
25秒前
sherry完成签到 ,获得积分10
26秒前
26秒前
zgsn应助fzd采纳,获得30
28秒前
30秒前
30秒前
鲤鱼梨愁关注了科研通微信公众号
32秒前
海边听海完成签到 ,获得积分10
33秒前
ailemonmint完成签到 ,获得积分10
34秒前
天下无敌丑娃娃完成签到,获得积分10
35秒前
38秒前
wind完成签到,获得积分10
39秒前
zz完成签到 ,获得积分10
39秒前
旧城旧巷等旧人完成签到 ,获得积分10
39秒前
40秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912856
捐赠科研通 2476071
什么是DOI,文献DOI怎么找? 1318651
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388