CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients

接收机工作特性 支持向量机 逻辑回归 随机森林 决策树 人工智能 试验装置 膀胱癌 计算机科学 人口 交叉验证 医学 癌症 机器学习 统计 内科学 数学 环境卫生
作者
Ying Cao,Hongyu Zhu,Zhenkai Li,Canyu Liu,Juan Ye
出处
期刊:Academic Radiology [Elsevier BV]
被引量:2
标识
DOI:10.1016/j.acra.2024.02.047
摘要

Rationale and Objectives

The role of Programmed death-ligand 1 (PD-L1) expression is crucial in guiding immunotherapy selection. This study aims to develop and evaluate a radiomic model, leveraging Computed Tomography (CT) imaging, with the objective of predicting PD-L1 expression status in patients afflicted with bladder cancer.

Materials and Methods

The study encompassed 183 subjects diagnosed with histologically confirmed bladder cancer, among which the PD-L1(+) cohort constituted 60.1% of the total population. Stratified random sampling was utilized at a 7:3 ratio. We employed five diverse machine learning algorithms—Decision Tree, Random Forest, Linear Support Vector Classification, Support Vector Machine, and Logistic Regression—to establish radiomic models on the training dataset. These models endeavored to predict PD-L1 expression status premised on radiomic features derived from region-of-interest segmentation. Subsequent to this, the predictive performance of these models was examined on a validation set employing the receiver operating characteristic (ROC) curve. The DeLong test was utilized to contrast ROC curves, thereby pinpointing the model with superior predictive accuracy.

Results

16 features were chosen for the model construction. All five models revealed strong performance in the training set (AUC, 0.920–1) and commendable predictive ability in the validation set (AUC, 0.753–0.766). As per the DeLong test, no statistically significant disparities were observed among any of the models (P > 0.05) in the validation set. Additional verification through the calibration curve and decision curve analysis indicated that the Logistic Regression model exhibited extraordinary precision and practicality.

Conclusion

Our machine learning model, grounded on radiomic features, demonstrated its proficiency in accurately distinguishing bladder cancer patients with high PD-L1 expression. Future research, incorporating more exhaustive datasets, could potentially augment the predictive efficiency of radiomic algorithms, thereby advancing their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sam十九发布了新的文献求助10
1秒前
1秒前
guard发布了新的文献求助10
2秒前
2秒前
ldw发布了新的文献求助30
2秒前
张龙雨发布了新的文献求助10
3秒前
3秒前
4秒前
6秒前
夏日发布了新的文献求助10
6秒前
彭于晏应助熊仔仔熊采纳,获得30
6秒前
nanjiren完成签到,获得积分10
6秒前
乐乐应助水上书采纳,获得10
10秒前
小二郎应助guard采纳,获得10
10秒前
北夏发布了新的文献求助10
11秒前
11秒前
12秒前
gyh完成签到,获得积分10
12秒前
Profeto应助车厘子采纳,获得10
13秒前
爆米花应助nanjiren采纳,获得10
15秒前
典雅储发布了新的文献求助30
15秒前
song完成签到 ,获得积分10
15秒前
Njucd发布了新的文献求助10
15秒前
chen完成签到 ,获得积分10
16秒前
19秒前
科目三应助悟寒采纳,获得10
19秒前
水上书发布了新的文献求助10
22秒前
lala完成签到,获得积分10
22秒前
Rondab应助霸气的小兔子采纳,获得10
22秒前
电脑桌完成签到,获得积分10
24秒前
25秒前
25秒前
高大厉完成签到,获得积分10
26秒前
泡面完成签到 ,获得积分10
27秒前
27秒前
beta发布了新的文献求助10
28秒前
赘婿应助小超哥哥小采纳,获得10
28秒前
熊仔仔熊发布了新的文献求助30
30秒前
123123完成签到,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994126
求助须知:如何正确求助?哪些是违规求助? 3534654
关于积分的说明 11266191
捐赠科研通 3274571
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724