CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients

接收机工作特性 支持向量机 逻辑回归 随机森林 决策树 人工智能 试验装置 膀胱癌 计算机科学 人口 交叉验证 医学 癌症 机器学习 统计 内科学 数学 环境卫生
作者
Ying Cao,Hongyu Zhu,Zhenkai Li,Canyu Liu,Juan Ye
出处
期刊:Academic Radiology [Elsevier]
被引量:2
标识
DOI:10.1016/j.acra.2024.02.047
摘要

Rationale and Objectives

The role of Programmed death-ligand 1 (PD-L1) expression is crucial in guiding immunotherapy selection. This study aims to develop and evaluate a radiomic model, leveraging Computed Tomography (CT) imaging, with the objective of predicting PD-L1 expression status in patients afflicted with bladder cancer.

Materials and Methods

The study encompassed 183 subjects diagnosed with histologically confirmed bladder cancer, among which the PD-L1(+) cohort constituted 60.1% of the total population. Stratified random sampling was utilized at a 7:3 ratio. We employed five diverse machine learning algorithms—Decision Tree, Random Forest, Linear Support Vector Classification, Support Vector Machine, and Logistic Regression—to establish radiomic models on the training dataset. These models endeavored to predict PD-L1 expression status premised on radiomic features derived from region-of-interest segmentation. Subsequent to this, the predictive performance of these models was examined on a validation set employing the receiver operating characteristic (ROC) curve. The DeLong test was utilized to contrast ROC curves, thereby pinpointing the model with superior predictive accuracy.

Results

16 features were chosen for the model construction. All five models revealed strong performance in the training set (AUC, 0.920–1) and commendable predictive ability in the validation set (AUC, 0.753–0.766). As per the DeLong test, no statistically significant disparities were observed among any of the models (P > 0.05) in the validation set. Additional verification through the calibration curve and decision curve analysis indicated that the Logistic Regression model exhibited extraordinary precision and practicality.

Conclusion

Our machine learning model, grounded on radiomic features, demonstrated its proficiency in accurately distinguishing bladder cancer patients with high PD-L1 expression. Future research, incorporating more exhaustive datasets, could potentially augment the predictive efficiency of radiomic algorithms, thereby advancing their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pipge发布了新的文献求助30
刚刚
刚刚
万能图书馆应助卡卡采纳,获得10
刚刚
牛虫虫发布了新的文献求助30
1秒前
1秒前
柔弱飞雪完成签到,获得积分10
1秒前
一种信仰完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
YE完成签到,获得积分10
3秒前
2鱼完成签到,获得积分10
3秒前
FooLeup立仔完成签到,获得积分10
3秒前
4秒前
顾矜应助JUll采纳,获得10
4秒前
Amai发布了新的文献求助20
4秒前
小马甲应助Lucas采纳,获得10
4秒前
5秒前
zZ发布了新的文献求助10
5秒前
qi完成签到,获得积分10
6秒前
标致缘郡发布了新的文献求助10
6秒前
miawei完成签到,获得积分10
7秒前
7秒前
wangfu发布了新的文献求助10
7秒前
明理依云完成签到,获得积分10
7秒前
7秒前
8秒前
二世小卒完成签到 ,获得积分10
8秒前
和谐乌龟完成签到,获得积分10
9秒前
阳尧完成签到,获得积分10
9秒前
帅气惜霜发布了新的文献求助10
9秒前
9秒前
kkkklo发布了新的文献求助30
11秒前
传奇3应助润润轩轩采纳,获得10
11秒前
11秒前
13秒前
和谐乌龟发布了新的文献求助10
13秒前
zZ完成签到,获得积分10
13秒前
科研小白完成签到,获得积分10
13秒前
LYY发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794