CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients

接收机工作特性 支持向量机 逻辑回归 随机森林 决策树 人工智能 试验装置 膀胱癌 计算机科学 人口 交叉验证 医学 癌症 机器学习 统计 内科学 数学 环境卫生
作者
Ying Cao,Hongyu Zhu,Zhenkai Li,Canyu Liu,Juan Ye
出处
期刊:Academic Radiology [Elsevier]
被引量:6
标识
DOI:10.1016/j.acra.2024.02.047
摘要

Rationale and Objectives

The role of Programmed death-ligand 1 (PD-L1) expression is crucial in guiding immunotherapy selection. This study aims to develop and evaluate a radiomic model, leveraging Computed Tomography (CT) imaging, with the objective of predicting PD-L1 expression status in patients afflicted with bladder cancer.

Materials and Methods

The study encompassed 183 subjects diagnosed with histologically confirmed bladder cancer, among which the PD-L1(+) cohort constituted 60.1% of the total population. Stratified random sampling was utilized at a 7:3 ratio. We employed five diverse machine learning algorithms—Decision Tree, Random Forest, Linear Support Vector Classification, Support Vector Machine, and Logistic Regression—to establish radiomic models on the training dataset. These models endeavored to predict PD-L1 expression status premised on radiomic features derived from region-of-interest segmentation. Subsequent to this, the predictive performance of these models was examined on a validation set employing the receiver operating characteristic (ROC) curve. The DeLong test was utilized to contrast ROC curves, thereby pinpointing the model with superior predictive accuracy.

Results

16 features were chosen for the model construction. All five models revealed strong performance in the training set (AUC, 0.920–1) and commendable predictive ability in the validation set (AUC, 0.753–0.766). As per the DeLong test, no statistically significant disparities were observed among any of the models (P > 0.05) in the validation set. Additional verification through the calibration curve and decision curve analysis indicated that the Logistic Regression model exhibited extraordinary precision and practicality.

Conclusion

Our machine learning model, grounded on radiomic features, demonstrated its proficiency in accurately distinguishing bladder cancer patients with high PD-L1 expression. Future research, incorporating more exhaustive datasets, could potentially augment the predictive efficiency of radiomic algorithms, thereby advancing their clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
刚刚
1秒前
上官若男应助Gracywss采纳,获得20
1秒前
关于我发布了新的文献求助20
1秒前
ganjqly完成签到,获得积分10
1秒前
阿飞完成签到,获得积分10
1秒前
裴果完成签到,获得积分10
1秒前
2秒前
樱铃完成签到,获得积分10
2秒前
啦啦啦完成签到 ,获得积分10
2秒前
yk完成签到 ,获得积分10
3秒前
我睡觉的时候不困完成签到 ,获得积分10
3秒前
阿苏完成签到 ,获得积分10
3秒前
颖火虫2588完成签到,获得积分10
3秒前
3秒前
4秒前
畅快雁山完成签到,获得积分10
4秒前
4秒前
寻找组织应助鳗鱼向日葵采纳,获得30
4秒前
稳住完成签到,获得积分10
5秒前
芝士完成签到,获得积分10
5秒前
善学以致用应助liulangnmg采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
6秒前
111aa发布了新的文献求助10
6秒前
子车茗应助超好运采纳,获得30
6秒前
转山转水转出了自我完成签到,获得积分10
7秒前
8秒前
8秒前
领导范儿应助宓广缘采纳,获得10
9秒前
忐忑的远山完成签到,获得积分10
10秒前
hq6045x完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
hhp完成签到,获得积分10
11秒前
端庄书雁完成签到,获得积分10
11秒前
11秒前
by完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959