Causal relationships in longitudinal observational data: An integrative modeling approach.

观察研究 心理学 结构方程建模 纵向数据 因果模型 计量经济学 统计 计算机科学 数学 数据挖掘
作者
Claudinei Eduardo Biazoli,João Ricardo Sato,Michael Pluess
出处
期刊:Psychological Methods [American Psychological Association]
被引量:1
标识
DOI:10.1037/met0000648
摘要

Much research in psychology relies on data from observational studies that traditionally do not allow for causal interpretation. However, a range of approaches in statistics and computational sciences have been developed to infer causality from correlational data. Based on conceptual and theoretical considerations on the integration of interventional and time-restrainment notions of causality, we set out to design and empirically test a new approach to identify potential causal factors in longitudinal correlational data. A principled and representative set of simulations and an illustrative application to identify early-life determinants of cognitive development in a large cohort study are presented. The simulation results illustrate the potential but also the limitations for discovering causal factors in observational data. In the illustrative application, plausible candidates for early-life determinants of cognitive abilities in 5-year-old children were identified. Based on these results, we discuss the possibilities of using exploratory causal discovery in psychological research but also highlight its limits and potential misuses and misinterpretations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
笨笨的不斜完成签到,获得积分10
刚刚
xtqgyy发布了新的文献求助10
刚刚
1秒前
Cat完成签到,获得积分0
1秒前
科研小菜完成签到,获得积分10
2秒前
江南烟雨如笙完成签到,获得积分10
2秒前
2秒前
stt关闭了stt文献求助
2秒前
3秒前
yangang发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
zhui发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
文献缺缺应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
清爽老九应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助李知恩采纳,获得10
4秒前
shouyu29应助科研通管家采纳,获得10
5秒前
朝天完成签到,获得积分10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
zzzq应助科研通管家采纳,获得10
5秒前
demonox发布了新的文献求助10
5秒前
赖颖豪完成签到 ,获得积分10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794