Three-Dimensional Ni-MOF as a High-Performance Supercapacitor Anode Material; Experimental and Theoretical Insight

阳极 超级电容器 电容 化学 电极 法拉第效率 阴极 电解质 电流密度 扩散 分析化学(期刊) 密度泛函理论 物理化学 热力学 计算化学 有机化学 物理 量子力学
作者
Malaya K. Sahoo,Pratap Mane,Brahmananda Chakraborty,J. N. Behera
出处
期刊:Inorganic Chemistry [American Chemical Society]
卷期号:63 (14): 6383-6395 被引量:28
标识
DOI:10.1021/acs.inorgchem.4c00144
摘要

A three-dimensional (3D) Ni-MOF of the formula [Ni(C4H4N2)(CHO2)2]n, has been reported, which shows a capacitance of 2150 F/g at a current density of 1A/g in a three-electrode setup (5.0 M KOH). Post-mortem analysis of the sample after three-electrode measurements revealed the bias-induced transformation of Ni-MOF to Ni(OH)2, which has organic constituents intercalated within the sample exhibiting better storage performance than bulk Ni(OH)2. Afterward, the synthesized MOF and reduced graphene (rGO) were used as the anode and cathode electrode material, respectively, and a two-electrode asymmetric supercapacitor device (ASC) setup was designed that exhibited a capacitance of 125 F/g (at 0.2 A/g) with a high energy density of 50.17 Wh/kg at a power density of 335.1 W/kg. The ASC further has a very high reversibility (97.9% Coulombic efficiency) and cyclic stability (94%) after 5000 constant charge-discharge cycles. Its applicability was also demonstrated by running a digital watch. Using sophisticated density functional theory simulations, the electronic properties, diffusion energy barrier for the electrolytic ions (K+), and quantum capacitance for the Ni(OH)2 electrode have been reported. The lower diffusion energy barrier (0.275 eV) and higher quantum capacitance (1150 μF/cm2) are attributed to the higher charge storage performance of the Ni-MOF-transformed Ni(OH)2 electrode as observed in the experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闭眼听风雨完成签到,获得积分10
刚刚
刚刚
含蓄的白安完成签到,获得积分10
1秒前
1秒前
善学以致用应助Huang采纳,获得10
1秒前
love454106发布了新的文献求助10
2秒前
丫丫乐发布了新的文献求助10
2秒前
hey应助Jane采纳,获得80
4秒前
秒秒发布了新的文献求助10
4秒前
4秒前
所所应助kkk采纳,获得10
5秒前
苗觉觉发布了新的文献求助10
6秒前
科目三应助zhj采纳,获得10
7秒前
张张zzz完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Hello应助发文章12138采纳,获得10
8秒前
8秒前
孙浩洋发布了新的文献求助10
8秒前
LL关闭了LL文献求助
8秒前
春意盎然完成签到,获得积分10
8秒前
chenyao发布了新的文献求助10
8秒前
8秒前
8秒前
李扒皮完成签到,获得积分10
8秒前
所所应助你维好困采纳,获得10
9秒前
CodeCraft应助你维好困采纳,获得10
9秒前
吕亦寒完成签到,获得积分10
9秒前
Jasper应助清浅采纳,获得10
9秒前
whiteandpink098完成签到,获得积分10
9秒前
10秒前
10秒前
野性的牛排完成签到,获得积分10
10秒前
连长发布了新的文献求助10
10秒前
李健应助ernest采纳,获得10
10秒前
Jasper应助love454106采纳,获得10
11秒前
WTL完成签到,获得积分10
11秒前
追光者完成签到,获得积分10
12秒前
12秒前
赘婿应助萤火虫采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006