Identification of Attention-Deficit-Hyperactivity Disorder Subtypes Based on Structural MRI Grey Matter Volume and Phenotypic Information

灰质 注意缺陷多动障碍 心理学 基于体素的形态计量学 临床心理学 医学 听力学 磁共振成像 精神科 放射科 白质
作者
Usha Rupni K,P. Aruna Priya
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (14)
标识
DOI:10.2174/1573405619666230119144142
摘要

One of the neurodevelopmental disorders widely affecting school-aged children in recent years is attention deficit hyperactivity disorder (ADHD). In many neurodevelopmental disorders, grey matter may be used as a clinical indicator by looking at MRIs.The study aimed to segment grey matter from brain MRI using a proposed fuzzy c-means clustering-based technique for the detection of ADHD and its subtypes (ADHD-Inattentive, ADHDHyperactive, and ADHD-Combined). The grey matter volume, age, gender, and medication status of the subjects were investigated to identify ADHD subtypes.A modified fuzzy c-means with an elbow approach has been proposed to overcome the drawbacks of previous fuzzy c-means methods and improve segmentation performance. The volume of segmented grey matter was included with the phenotypic information of the ADHD-200 dataset for data analysis of typically developing (TD) and ADHD subtypes.The proposed segmentation exhibited a dice similarity index of 95%. ADHD-Inattentive exhibited a loss of grey matter in the prefrontal cortex, while ADHD-hyperactive exhibited a loss of grey matter in the cerebellum when compared to TD. The analysis of ADHD subtypes based on age and gender showed that children transitioning to adolescence are mostly affected by ADHD-inattentive and female kids are less prone to ADHD-hyperactive. The whole grey matter volume of ADHD-inattentive children, on average, was found to be approximately 4% less than ADHD-combined. Furthermore, the whole grey matter volume was less in non-medication naive children.This study may support healthcare providers in giving appropriate occupational therapy based on the identification of different ADHD subtypes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科研通AI6.1应助薄雪草采纳,获得10
2秒前
Arzu发布了新的文献求助10
2秒前
3秒前
涛涛刚刚发布了新的文献求助60
3秒前
希望天下0贩的0应助鹿厉采纳,获得10
3秒前
3秒前
微笑发布了新的文献求助20
4秒前
5秒前
5秒前
6秒前
xdy1990完成签到,获得积分10
7秒前
7秒前
青空发布了新的文献求助10
8秒前
想吃火锅完成签到,获得积分10
10秒前
CheeseD发布了新的文献求助10
10秒前
栗子完成签到,获得积分10
10秒前
caicai发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助50
12秒前
李爱国应助蒺藜采纳,获得80
12秒前
fy完成签到,获得积分10
12秒前
Ching完成签到,获得积分10
12秒前
科研通AI6.1应助XIN采纳,获得10
13秒前
充电宝应助XIN采纳,获得10
13秒前
luonayi完成签到,获得积分10
13秒前
14秒前
香蕉觅云应助卜应采纳,获得10
14秒前
彭于晏应助dpy4462采纳,获得10
14秒前
14秒前
脑洞疼应助咔敏采纳,获得30
14秒前
15秒前
wanci应助白小白采纳,获得10
15秒前
16秒前
爆米花应助bb采纳,获得10
16秒前
John_sdu完成签到,获得积分10
17秒前
18秒前
上官若男应助典雅的俊驰采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805491
求助须知:如何正确求助?哪些是违规求助? 5849635
关于积分的说明 15516346
捐赠科研通 4930720
什么是DOI,文献DOI怎么找? 2654728
邀请新用户注册赠送积分活动 1601530
关于科研通互助平台的介绍 1556562