Identification of Attention-Deficit-Hyperactivity Disorder Subtypes Based on Structural MRI Grey Matter Volume and Phenotypic Information

灰质 注意缺陷多动障碍 心理学 基于体素的形态计量学 临床心理学 医学 听力学 磁共振成像 精神科 放射科 白质
作者
Usha Rupni K,P. Aruna Priya
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (14)
标识
DOI:10.2174/1573405619666230119144142
摘要

One of the neurodevelopmental disorders widely affecting school-aged children in recent years is attention deficit hyperactivity disorder (ADHD). In many neurodevelopmental disorders, grey matter may be used as a clinical indicator by looking at MRIs.The study aimed to segment grey matter from brain MRI using a proposed fuzzy c-means clustering-based technique for the detection of ADHD and its subtypes (ADHD-Inattentive, ADHDHyperactive, and ADHD-Combined). The grey matter volume, age, gender, and medication status of the subjects were investigated to identify ADHD subtypes.A modified fuzzy c-means with an elbow approach has been proposed to overcome the drawbacks of previous fuzzy c-means methods and improve segmentation performance. The volume of segmented grey matter was included with the phenotypic information of the ADHD-200 dataset for data analysis of typically developing (TD) and ADHD subtypes.The proposed segmentation exhibited a dice similarity index of 95%. ADHD-Inattentive exhibited a loss of grey matter in the prefrontal cortex, while ADHD-hyperactive exhibited a loss of grey matter in the cerebellum when compared to TD. The analysis of ADHD subtypes based on age and gender showed that children transitioning to adolescence are mostly affected by ADHD-inattentive and female kids are less prone to ADHD-hyperactive. The whole grey matter volume of ADHD-inattentive children, on average, was found to be approximately 4% less than ADHD-combined. Furthermore, the whole grey matter volume was less in non-medication naive children.This study may support healthcare providers in giving appropriate occupational therapy based on the identification of different ADHD subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助宇哈哈采纳,获得10
1秒前
目土土发布了新的文献求助10
2秒前
li发布了新的文献求助10
2秒前
gadfsjkdahf完成签到,获得积分10
4秒前
hotcas完成签到,获得积分10
4秒前
姬欢欢发布了新的文献求助10
5秒前
雨中尘埃完成签到 ,获得积分10
6秒前
8秒前
xing完成签到,获得积分10
9秒前
不停发布了新的文献求助10
10秒前
小马啊倒萨打算完成签到,获得积分10
10秒前
Seven发布了新的文献求助10
10秒前
11秒前
shoanofna完成签到,获得积分10
12秒前
herschelwu完成签到,获得积分10
15秒前
蔡雨岑完成签到,获得积分10
15秒前
Metakuro完成签到,获得积分10
15秒前
科研通AI2S应助肖一甜采纳,获得10
15秒前
超文献发布了新的文献求助10
17秒前
17秒前
David完成签到 ,获得积分10
18秒前
Metakuro发布了新的文献求助10
18秒前
guantlv发布了新的文献求助10
19秒前
TearMarks完成签到 ,获得积分10
19秒前
gao完成签到 ,获得积分10
20秒前
火星上的雨莲完成签到,获得积分10
21秒前
酱酱君举报科研狂魔求助涉嫌违规
21秒前
柒柒完成签到,获得积分10
22秒前
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
不配.应助科研通管家采纳,获得20
24秒前
飘逸问薇完成签到 ,获得积分10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
万能图书馆应助妮妮采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023