催化作用
材料科学
溶解
金属
吸附
密度泛函理论
碳纤维
空位缺陷
氧气
Atom(片上系统)
化学工程
纳米技术
物理化学
化学
计算化学
结晶学
有机化学
复合材料
冶金
嵌入式系统
工程类
复合数
计算机科学
作者
Hao Tian,Ailing Song,Peng Zhang,Kaian Sun,Jingjing Wang,Bing Sun,Qiaohui Fan,Guangjie Shao,Chen Chen,Hao Liu,Yadong Li,Guoxiu Wang
标识
DOI:10.1002/adma.202210714
摘要
Single-atom catalysts (SACs) have attracted extensive interest to catalyze the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. However, the development of SACs with high selectivity and long-term stability is a great challenge. In this work, carbon vacancy modified Fe-N-C SACs (FeH -N-C) are practically designed and synthesized through microenvironment modulation, achieving high-efficient utilization of active sites and optimization of electronic structures. The FeH -N-C catalyst exhibits a half-wave potential (E1/2 ) of 0.91 V and sufficient durability of 100 000 voltage cycles with 29 mV E1/2 loss. Density functional theory (DFT) calculations confirm that the vacancies around metal-N4 sites can reduce the adsorption free energy of OH*, and hinder the dissolution of metal center, significantly enhancing the ORR kinetics and stability. Accordingly, FeH -N-C SACs presented a high-power density and long-term stability over 1200 h in rechargeable zinc-air batteries (ZABs). This work will not only guide for developing highly active and stable SACs through rational modulation of metal-N4 sites, but also provide an insight into the optimization of the electronic structure to boost electrocatalytical performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI