氢键
化学位移
化学
魔角纺纱
固态核磁共振
氢
核磁共振波谱
质子核磁共振
结晶学
物理化学
核磁共振
分子
有机化学
物理
作者
Darren H. Brouwer,Janelle G. Mikolajewski
标识
DOI:10.1016/j.ssnmr.2022.101848
摘要
Hydrogen bonding plays an important role in the structure and function of a wide range of materials. Solid-state 1H nuclear magnetic resonance (NMR) spectroscopy provides a very sensitive tool to investigate the local structure of hydrogen atoms involved in hydrogen bonding. While there is extensive 1H solid-state NMR data on O–H - - O hydrogen bonding in solid carboxylic acids, there has been no systematic 1H solid-state NMR studies of hydroxyl groups in carbohydrates (and hydroxyl groups in general). With a view to studying the hydrogen bonding in more complex materials such as cellulose polymorphs, we carried out a detailed solid-state 1H NMR investigation of the model compounds α-d-glucose and α-d-glucose monohydrate. Through a combination of fast magic-angle spinning (MAS), combined rotation and multiple pulse spectroscopy (CRAMPS), and two-dimensional (2D) correlation experiments carried out at ultrahigh magnetic fields, it was possible to assign all of the aliphatic (CH), hydroxyl (OH), and water (H2O) 1H chemical shifts in both forms of α-d-glucose. Plane-wave DFT calculations were employed to improve the hydrogen atom positions for α-d-glucose monohydrate and to calculate 1H chemical shifts, providing additional support for the experimentally determined peak assignments. Finally, the relationship between the hydroxyl 1H chemical shifts and their hydrogen bonding geometry was investigated and compared to the well-established relationship for carboxylic acid protons.
科研通智能强力驱动
Strongly Powered by AbleSci AI