Performance evaluation of 67 denoising filters in ultrasound images: A systematic comparison analysis

降噪 计算机科学 人工智能 滤波器(信号处理) 噪音(视频) 模式识别(心理学) 秩(图论) 超声波 中值滤波器 图像质量 计算机视觉 图像处理 图像(数学) 数学 医学 放射科 组合数学
作者
Ali Abbasian Ardakani,Afshin Mohammadi,Fariborz Faeghi,U. Rajendra Acharya
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (2): 445-464 被引量:13
标识
DOI:10.1002/ima.22843
摘要

Abstract Noise corrupts ultrasound images and degrades spatial and contrast resolutions. Hence, it is challenging to characterize the lesions precisely using ultrasound images. The present study aims to evaluate 67 denoising filters and select the best one for ultrasound image denoising. Seven test images were synthesized to evaluate the performance of filters at three different noise levels. Eleven full‐reference quantitative image quality metrics (IQMs) were employed to evaluate the performance of the filters. A new filter evaluation method, Rank Analysis , was introduced and utilized at each noise level. The ten best filters with the smallest mean rank in all noise levels were defined for further analysis on real ultrasound images. The Rank Analysis was also employed for real ultrasound images, and filters were evaluated based on 14 IQMs (11 full‐reference and three no‐reference). Finally, the best filter was defined using the repeated measures analysis statistical test. According to the Rank Analysis results, the Spatial correlation (SCorr) filter obtained the best results with the mean rank scores±SD of 1 ± 0, which was significantly better than the other nine filters ( p < 0.001). The second‐best results were achieved by three filters, Bitonic, most homogeneous neighborhood, and Lee diffusion ( p < 0.05). We concluded that SCorr is the best filter for ultrasound image denoising. It can be used in the pre‐processing step before segmentation and diagnostic procedures. In addition, a new filter evaluation method, Rank Analysis, was introduced in this study, which is easy to use, fast, and provides reliable results. So, it can be used to evaluate newly developed filters in the future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdy111应助xiaoguai采纳,获得20
刚刚
dachengzi完成签到,获得积分10
刚刚
刚刚
丘比特应助含蓄心锁采纳,获得10
刚刚
许方恺发布了新的文献求助10
刚刚
cr发布了新的文献求助10
1秒前
plan发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
陆柯川完成签到,获得积分10
3秒前
包容可仁发布了新的文献求助10
4秒前
Xbax发布了新的文献求助10
4秒前
4秒前
SciGPT应助莫西莫西采纳,获得10
4秒前
与月同行完成签到,获得积分10
5秒前
ff完成签到,获得积分10
5秒前
bkagyin应助summer采纳,获得10
6秒前
瘦瘦依白应助kingwhitewing采纳,获得10
6秒前
一把过完成签到,获得积分10
6秒前
6秒前
7秒前
Ezio_sunhao完成签到,获得积分10
7秒前
8秒前
9秒前
热心烙完成签到,获得积分10
9秒前
9秒前
阿泽完成签到 ,获得积分10
9秒前
9秒前
wwww完成签到 ,获得积分10
10秒前
YixiaoWang发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
cr完成签到,获得积分10
11秒前
威武鸽子完成签到,获得积分20
11秒前
包容可仁完成签到,获得积分10
11秒前
拼搏绿柳完成签到,获得积分10
12秒前
开心的紫烟完成签到,获得积分10
12秒前
wdy111应助淡漠采纳,获得20
12秒前
12秒前
水吉2000完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582