Performance evaluation of 67 denoising filters in ultrasound images: A systematic comparison analysis

降噪 计算机科学 人工智能 滤波器(信号处理) 噪音(视频) 模式识别(心理学) 秩(图论) 超声波 中值滤波器 图像质量 计算机视觉 图像处理 图像(数学) 数学 医学 放射科 组合数学
作者
Ali Abbasian Ardakani,Afshin Mohammadi,Fariborz Faeghi,U. Rajendra Acharya
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (2): 445-464 被引量:13
标识
DOI:10.1002/ima.22843
摘要

Abstract Noise corrupts ultrasound images and degrades spatial and contrast resolutions. Hence, it is challenging to characterize the lesions precisely using ultrasound images. The present study aims to evaluate 67 denoising filters and select the best one for ultrasound image denoising. Seven test images were synthesized to evaluate the performance of filters at three different noise levels. Eleven full‐reference quantitative image quality metrics (IQMs) were employed to evaluate the performance of the filters. A new filter evaluation method, Rank Analysis , was introduced and utilized at each noise level. The ten best filters with the smallest mean rank in all noise levels were defined for further analysis on real ultrasound images. The Rank Analysis was also employed for real ultrasound images, and filters were evaluated based on 14 IQMs (11 full‐reference and three no‐reference). Finally, the best filter was defined using the repeated measures analysis statistical test. According to the Rank Analysis results, the Spatial correlation (SCorr) filter obtained the best results with the mean rank scores±SD of 1 ± 0, which was significantly better than the other nine filters ( p < 0.001). The second‐best results were achieved by three filters, Bitonic, most homogeneous neighborhood, and Lee diffusion ( p < 0.05). We concluded that SCorr is the best filter for ultrasound image denoising. It can be used in the pre‐processing step before segmentation and diagnostic procedures. In addition, a new filter evaluation method, Rank Analysis, was introduced in this study, which is easy to use, fast, and provides reliable results. So, it can be used to evaluate newly developed filters in the future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenkj完成签到,获得积分10
1秒前
ikun完成签到,获得积分10
2秒前
EricSai完成签到,获得积分10
2秒前
5秒前
Skywings发布了新的文献求助10
5秒前
const完成签到,获得积分10
12秒前
刻苦惊蛰完成签到 ,获得积分10
13秒前
美好眼神发布了新的文献求助20
18秒前
花阳年华完成签到 ,获得积分10
18秒前
方赫然完成签到,获得积分0
18秒前
sunshine完成签到,获得积分10
20秒前
DMKurisu关注了科研通微信公众号
22秒前
23秒前
宁静致远完成签到,获得积分10
23秒前
糊涂的剑完成签到,获得积分10
24秒前
tfsn20完成签到,获得积分0
26秒前
煜琪完成签到 ,获得积分10
27秒前
糊涂的剑发布了新的文献求助10
28秒前
back you up完成签到,获得积分10
29秒前
大翟完成签到,获得积分10
30秒前
小栗子应助美好眼神采纳,获得20
34秒前
大模型应助糊涂的剑采纳,获得10
37秒前
结实山水完成签到 ,获得积分10
38秒前
339564965完成签到,获得积分10
42秒前
风信子完成签到,获得积分10
43秒前
Helios完成签到,获得积分10
43秒前
ccc完成签到,获得积分10
43秒前
只想顺利毕业的科研狗完成签到,获得积分10
44秒前
风中的老九完成签到,获得积分10
45秒前
松哥完成签到,获得积分10
46秒前
xueshidaheng完成签到,获得积分10
46秒前
失眠的香蕉完成签到 ,获得积分10
47秒前
Brief完成签到,获得积分10
47秒前
美好眼神完成签到,获得积分10
47秒前
nanostu完成签到,获得积分10
48秒前
36456657应助科研通管家采纳,获得10
48秒前
Jason完成签到 ,获得积分10
49秒前
独特翠丝完成签到,获得积分10
54秒前
56秒前
wang完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341900
求助须知:如何正确求助?哪些是违规求助? 2969256
关于积分的说明 8637992
捐赠科研通 2648930
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671917
邀请新用户注册赠送积分活动 660991