EEG based classification of children with learning disabilities using shallow and deep neural network

人工智能 计算机科学 脑电图 人工神经网络 模式识别(心理学) 深度学习 特征选择 预处理器 分类器(UML) 卷积神经网络 特征提取 机器学习 心理学 精神科
作者
N.P. Guhan Seshadri,Sneha Agrawal,Bikesh Kumar Singh,B. Geethanjali,Mahesh Veezhinathan,Ram Bilas Pachori
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:82: 104553-104553 被引量:19
标识
DOI:10.1016/j.bspc.2022.104553
摘要

Learning disability (LD), a neurodevelopmental disorder that has severely impacted the lives of many children all over the world. LD refers to significant deficiency in children's reading, writing, spelling, and ability to solve mathematical task despite having normal intelligence. This paper proposes a framework for early detection and classification of LD with non-LD children from rest electroencephalogram (EEG) signals using shallow and deep neural network. Twenty children with LD and twenty non-LD children (aged 8–16 years) participated in this study. Preprocessing the raw EEG signal, segmentation and extraction of various features from the alpha, beta, delta, and theta bands obtained using digital wavelet transform (DWT). Filter based feature selection method were employed for the selection of most relevant features that reduces the computation burden on models. Afterwards, these ranked accumulated features were evaluated separately by machine learning (ML) classifiers and neural network (shallow and deep) models to investigate the performance. The performance of the ML classifiers and one-hidden layer shallow neural network and 3-hidden layer deep neural network were compared. Experimental results showed that the most relevant features computed by ReliefF algorithm along with the shallow neural network based classifier attained the highest average and maximum classification accuracy of 95.8 % and 97.5 % respectively, which is greatest among the existing literatures. The efficient and automatic LD classification from EEG signal could aid in the development of computer-aided diagnosis systems for early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助自信的冬日采纳,获得10
1秒前
单薄归尘完成签到 ,获得积分10
1秒前
摩登兄弟发布了新的文献求助10
1秒前
super完成签到,获得积分10
2秒前
2秒前
问筠完成签到,获得积分10
3秒前
3秒前
严惜发布了新的文献求助10
3秒前
一顿鸡米花完成签到,获得积分10
4秒前
super发布了新的文献求助10
4秒前
桐桐应助阿巴阿巴采纳,获得10
5秒前
NexusExplorer应助ylq采纳,获得10
5秒前
5秒前
huang发布了新的文献求助10
5秒前
小文cremen发布了新的文献求助10
6秒前
小文cremen发布了新的文献求助10
6秒前
7秒前
7秒前
VitoLi发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
二巨头完成签到,获得积分10
10秒前
11秒前
充电宝应助xue采纳,获得10
11秒前
12秒前
蜘蛛侠888发布了新的文献求助10
13秒前
14秒前
123456完成签到,获得积分10
14秒前
VitoLi完成签到,获得积分10
15秒前
ylq发布了新的文献求助10
16秒前
pitto完成签到,获得积分10
16秒前
露露发布了新的文献求助10
17秒前
jianbin发布了新的文献求助10
17秒前
领导范儿应助zhan采纳,获得10
17秒前
一诺相许完成签到 ,获得积分10
18秒前
pitto发布了新的文献求助10
19秒前
CipherSage应助龙仔采纳,获得10
19秒前
脑洞疼应助无畏采纳,获得10
20秒前
我先睡了应助peaceone采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425