A pixel-level deep segmentation network for automatic defect detection

计算机科学 分割 人工智能 模式识别(心理学) 像素 背景(考古学) 编码器 特征(语言学) 卷积神经网络 构造(python库) 块(置换群论) 哲学 程序设计语言 古生物学 几何学 操作系统 生物 语言学 数学
作者
Lei Yang,Shuai Xu,Junfeng Fan,En Li,Yanhong Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119388-119388 被引量:24
标识
DOI:10.1016/j.eswa.2022.119388
摘要

Defect detection is a very important link for much manufacturing and processing applications which could be used for quality control and precise maintenance decision. However, faced with the weak-texture and low-contrast industrial environment, high-precision defect detection still faces a certain challenge due to diverse and complex of defects. Meanwhile, due to a minimal portion image pixels of defects, the pixel-level defect detection task is always against class-unbalance issue which also will affect the detection performance. Recently, with the strong automatic feature representation ability, deep learning has shown an excellent detection performance on defect identification and location. Nevertheless, it still has some demerits, such as insufficient processing of feature maps, lack of temporal modeling information, etc. To address these issues, on the basis of the encoder–decoder architecture, a pixel-level deep segmentation network is proposed for automatic defect detection to construct an end-to-end defect segmentation model. To realize effective feature representation, a residual attention network is proposed to construct the backbone network, which could also make the segmentation network better emphasize target regions. Meanwhile, to improve the network propagation ability of subtle context features, a bidirectional convolutional long short-term memory (ConvLSTM) block is introduced to optimize the skip connections to learn long-range spatial contexts. Besides, a weighted loss function is proposed for model training to address the class-unbalance issue. Combined with multiple public data sets, through qualitative and quantitative analysis, experimental results demonstrate that the proposed defect segmentation network achieves a better performance compared to other state-of-the-art segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
情怀应助cheerfulsmurfs采纳,获得10
1秒前
Chloe发布了新的文献求助30
3秒前
欣欣应助Lze采纳,获得10
7秒前
AZN完成签到,获得积分10
7秒前
10秒前
田様应助中意采纳,获得10
10秒前
阳阳阳完成签到 ,获得积分10
10秒前
飞羽发布了新的文献求助10
13秒前
Chloe完成签到,获得积分20
15秒前
15秒前
姝飞糊涂完成签到,获得积分10
17秒前
马小马完成签到 ,获得积分10
17秒前
求文献发布了新的文献求助10
19秒前
Lucas应助一叶知秋采纳,获得10
20秒前
zjm完成签到,获得积分10
23秒前
媛媛完成签到 ,获得积分10
23秒前
salda_ssibal发布了新的文献求助10
23秒前
aldehyde应助synergia采纳,获得10
23秒前
24秒前
26秒前
奋斗枫完成签到,获得积分10
26秒前
victormanboy3发布了新的文献求助10
29秒前
Niki发布了新的文献求助10
30秒前
WML发布了新的文献求助10
30秒前
colorful完成签到 ,获得积分10
31秒前
牛牛完成签到 ,获得积分10
32秒前
PTEN完成签到,获得积分10
32秒前
彩色的夏瑶完成签到,获得积分10
32秒前
34秒前
礞石给怡然鹭洋的求助进行了留言
35秒前
chewu完成签到,获得积分10
36秒前
37秒前
37秒前
Orange应助PTEN采纳,获得10
37秒前
拼搏太英发布了新的文献求助10
39秒前
姝飞糊涂发布了新的文献求助10
39秒前
WML完成签到,获得积分10
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475560
求助须知:如何正确求助?哪些是违规求助? 3067449
关于积分的说明 9104069
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513826
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699182