A pixel-level deep segmentation network for automatic defect detection

计算机科学 分割 人工智能 模式识别(心理学) 像素 背景(考古学) 编码器 特征(语言学) 卷积神经网络 构造(python库) 块(置换群论) 哲学 程序设计语言 古生物学 几何学 操作系统 生物 语言学 数学
作者
Lei Yang,Shuai Xu,Junfeng Fan,En Li,Yanhong Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119388-119388 被引量:30
标识
DOI:10.1016/j.eswa.2022.119388
摘要

Defect detection is a very important link for much manufacturing and processing applications which could be used for quality control and precise maintenance decision. However, faced with the weak-texture and low-contrast industrial environment, high-precision defect detection still faces a certain challenge due to diverse and complex of defects. Meanwhile, due to a minimal portion image pixels of defects, the pixel-level defect detection task is always against class-unbalance issue which also will affect the detection performance. Recently, with the strong automatic feature representation ability, deep learning has shown an excellent detection performance on defect identification and location. Nevertheless, it still has some demerits, such as insufficient processing of feature maps, lack of temporal modeling information, etc. To address these issues, on the basis of the encoder–decoder architecture, a pixel-level deep segmentation network is proposed for automatic defect detection to construct an end-to-end defect segmentation model. To realize effective feature representation, a residual attention network is proposed to construct the backbone network, which could also make the segmentation network better emphasize target regions. Meanwhile, to improve the network propagation ability of subtle context features, a bidirectional convolutional long short-term memory (ConvLSTM) block is introduced to optimize the skip connections to learn long-range spatial contexts. Besides, a weighted loss function is proposed for model training to address the class-unbalance issue. Combined with multiple public data sets, through qualitative and quantitative analysis, experimental results demonstrate that the proposed defect segmentation network achieves a better performance compared to other state-of-the-art segmentation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助50
刚刚
1秒前
十一完成签到,获得积分10
1秒前
FashionBoy应助子铭采纳,获得10
1秒前
完美世界应助SweetyANN采纳,获得30
2秒前
2秒前
2秒前
张龙珑完成签到,获得积分10
3秒前
迅速冷霜发布了新的文献求助10
3秒前
3秒前
清秀的语山完成签到 ,获得积分10
3秒前
3秒前
时光完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
SeasonRain完成签到,获得积分10
7秒前
WangJ1018完成签到,获得积分10
7秒前
7秒前
8秒前
完美世界应助shuang采纳,获得50
8秒前
Shuo Yang发布了新的文献求助20
9秒前
天马行空发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
10秒前
paek发布了新的文献求助10
11秒前
11秒前
zhang关注了科研通微信公众号
11秒前
大巧若拙发布了新的文献求助10
12秒前
mjx完成签到,获得积分10
13秒前
子铭发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
pretty完成签到 ,获得积分10
14秒前
南松完成签到,获得积分10
15秒前
16秒前
CodeCraft应助子铭采纳,获得10
17秒前
大模型应助子铭采纳,获得10
17秒前
zhuboujs完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419