Rapid Derivatization of Phenolic and Oxime Hydroxyl with Isonicotinoyl Chloride under Aqueous Conditions and Its Application in LC–MS/MS Profiling Multiclass Steroids
化学
衍生化
色谱法
酰化
肟
氯化物
水溶液
检出限
有机化学
催化作用
高效液相色谱法
作者
Hui-Yang Liao,Xuan Xiao,Rui Peng,Juan Le,Haibo Wang,Shao‐Ting Wang
出处
期刊:Analytical Chemistry [American Chemical Society] 日期:2022-12-15卷期号:94 (51): 17980-17987被引量:7
Quantification of steroids possesses a crucial clinical value in early diagnosis and prognosis evaluation of various endocrine diseases. However, it is still challenging to realize feasible analysis of estrogens, androgens, progestogens, and corticoids within one single workflow. In this study, two derivatization reactions were newly designed for improvement: (1) acylation of phenolic hydroxyl on estrogens with isonicotinoyl chloride (INC) under the catalysis of 4-dimethylaminopyridine and (2) post-modification of oxime hydroxyl on hydroxylamine-pretreated ketosteroids with INC. Both reactions could conduct instantaneously at room temperature under aqueous conditions. Moreover, the resulting phenolic-INC and oxime-INC esters exhibited favorable MS responses. Through integrating these derivatization strategies with cold-induced phase separation technology, a feasible LC-MS/MS method was developed for simultaneous quantification of 15 multiclass steroids with proper sample consumption (50 μL serum), satisfying sensitivity (lower limit of quantitation at 0.01-5.00 ng/mL) and high throughput (40 min for sample-preparation). The practical applicability was tested by detecting 30 real samples from pregnant and non-pregnant women. The obtained results showed a good agreement with a previous validated methodology.