亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals

医学 队列 肝细胞癌 比例危险模型 随机森林 机器学习 危险系数 支持向量机 判别式 人工智能 肿瘤科 内科学 计算机科学 置信区间
作者
Tatsuya Minami,Masaya Sato,Hidenori Toyoda,Satoshi Yasuda,Tomoharu Yamada,T. Nakatsuka,Kenichiro Enooku,Hayato Nakagawa,Hidetaka Fujinaga,Masashi Izumiya,Yasuo Tanaka,Motoyuki Otsuka,Takamasa Ohki,Masahiro Arai,Yoshinari Asaoka,Atsushi Tanaka,Kiyomi Yasuda,Hideaki Miura,Itsuro Ogata,Toshiro Kamoshida
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:79 (4): 1006-1014 被引量:21
标识
DOI:10.1016/j.jhep.2023.05.042
摘要

Accurate risk stratification for hepatocellular carcinoma (HCC) after achieving a sustained viral response (SVR) is necessary for optimal surveillance. We aimed to develop and validate a machine learning (ML) model to predict the risk of HCC after achieving an SVR in individual patients.In this multicenter cohort study, 1742 patients with chronic hepatitis C who achieved an SVR were enrolled. Five ML models were developed including DeepSurv, gradient boosting survival analysis, random survival forest (RSF), survival support vector machine, and a conventional Cox proportional hazard model. Model performance was evaluated using Harrel' c-index and was externally validated in an independent cohort (977 patients).During the mean observation period of 5.4 years, 122 patients developed HCC (83 in the derivation cohort and 39 in the external validation cohort). The RSF model showed the best discrimination ability using seven parameters at the achievement of an SVR with a c-index of 0.839 in the external validation cohort and a high discriminative ability when the patients were categorized into three risk groups (P <0.001). Furthermore, this RSF model enabled the generation of an individualized predictive curve for HCC occurrence for each patient with an app available online.We developed and externally validated an RSF model with good predictive performance for the risk of HCC after an SVR. The application of this novel model is available on the website. This model could provide the data to consider an effective surveillance method. Further studies are needed to make recommendations for surveillance policies tailored to the medical situation in each country.A novel prediction model for HCC occurrence in patients after hepatitis C virus eradication was developed using machine learning algorithms. This model, using seven commonly measured parameters, has been shown to have a good predictive ability for HCC development and could provide a personalized surveillance system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
1秒前
RR完成签到,获得积分10
20秒前
Criminology34应助andrele采纳,获得10
23秒前
CodeCraft应助Marco_hxkq采纳,获得10
36秒前
吉安娜完成签到 ,获得积分10
42秒前
天天快乐应助科研通管家采纳,获得10
56秒前
GingerF应助科研通管家采纳,获得100
56秒前
1分钟前
Marco_hxkq发布了新的文献求助10
1分钟前
1分钟前
正直的友容完成签到,获得积分10
1分钟前
1分钟前
1分钟前
共享精神应助islazheng采纳,获得100
1分钟前
wcy发布了新的文献求助10
1分钟前
wcy完成签到,获得积分20
1分钟前
JamesPei应助乔一一采纳,获得10
1分钟前
柚子叶滋滋完成签到 ,获得积分10
1分钟前
呆萌冰彤完成签到 ,获得积分10
2分钟前
脑洞疼应助sun采纳,获得10
2分钟前
2分钟前
sun发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
wop111应助科研通管家采纳,获得20
2分钟前
3分钟前
Hello应助自由的32采纳,获得10
3分钟前
乔一一发布了新的文献求助10
3分钟前
3分钟前
banbieshenlu完成签到,获得积分10
3分钟前
自由的32完成签到,获得积分10
3分钟前
彭于晏应助愉博采纳,获得10
3分钟前
3分钟前
可爱的函函应助乔一一采纳,获得10
3分钟前
自由的32发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
VV关闭了VV文献求助
3分钟前
科研通AI5应助美味肉蟹煲采纳,获得10
3分钟前
活泼的机器猫完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952327
求助须知:如何正确求助?哪些是违规求助? 4215067
关于积分的说明 13110992
捐赠科研通 3996934
什么是DOI,文献DOI怎么找? 2187720
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115712