清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals

医学 队列 肝细胞癌 比例危险模型 随机森林 机器学习 危险系数 支持向量机 判别式 人工智能 肿瘤科 内科学 计算机科学 置信区间
作者
Tatsuya Minami,Masaya Sato,Hidenori Toyoda,Satoshi Yasuda,Tomoharu Yamada,T. Nakatsuka,Kenichiro Enooku,Hayato Nakagawa,Hidetaka Fujinaga,Masashi Izumiya,Yasuo Tanaka,Motoyuki Otsuka,Takamasa Ohki,Masahiro Arai,Yoshinari Asaoka,Atsushi Tanaka,Kiyomi Yasuda,Hideaki Miura,Itsuro Ogata,Toshiro Kamoshida
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:79 (4): 1006-1014 被引量:21
标识
DOI:10.1016/j.jhep.2023.05.042
摘要

Accurate risk stratification for hepatocellular carcinoma (HCC) after achieving a sustained viral response (SVR) is necessary for optimal surveillance. We aimed to develop and validate a machine learning (ML) model to predict the risk of HCC after achieving an SVR in individual patients.In this multicenter cohort study, 1742 patients with chronic hepatitis C who achieved an SVR were enrolled. Five ML models were developed including DeepSurv, gradient boosting survival analysis, random survival forest (RSF), survival support vector machine, and a conventional Cox proportional hazard model. Model performance was evaluated using Harrel' c-index and was externally validated in an independent cohort (977 patients).During the mean observation period of 5.4 years, 122 patients developed HCC (83 in the derivation cohort and 39 in the external validation cohort). The RSF model showed the best discrimination ability using seven parameters at the achievement of an SVR with a c-index of 0.839 in the external validation cohort and a high discriminative ability when the patients were categorized into three risk groups (P <0.001). Furthermore, this RSF model enabled the generation of an individualized predictive curve for HCC occurrence for each patient with an app available online.We developed and externally validated an RSF model with good predictive performance for the risk of HCC after an SVR. The application of this novel model is available on the website. This model could provide the data to consider an effective surveillance method. Further studies are needed to make recommendations for surveillance policies tailored to the medical situation in each country.A novel prediction model for HCC occurrence in patients after hepatitis C virus eradication was developed using machine learning algorithms. This model, using seven commonly measured parameters, has been shown to have a good predictive ability for HCC development and could provide a personalized surveillance system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
10秒前
54秒前
Orange应助dd采纳,获得10
1分钟前
拙青完成签到,获得积分10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
计划完成签到,获得积分10
2分钟前
2分钟前
dd发布了新的文献求助10
2分钟前
2分钟前
yf发布了新的文献求助10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
怕孤独的迎波关注了科研通微信公众号
2分钟前
2分钟前
华仔应助怕孤独的迎波采纳,获得20
2分钟前
Double发布了新的文献求助150
3分钟前
上好佳完成签到,获得积分10
3分钟前
朴素鑫完成签到,获得积分10
4分钟前
炫潮浪子完成签到,获得积分10
4分钟前
wrl2023完成签到,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
怕孤独的迎波完成签到,获得积分10
6分钟前
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
6分钟前
adkdad完成签到 ,获得积分10
6分钟前
tt完成签到,获得积分10
6分钟前
Yini应助非洲大象采纳,获得50
7分钟前
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
ax发布了新的文献求助30
7分钟前
CHEN完成签到 ,获得积分10
7分钟前
ljm完成签到 ,获得积分10
7分钟前
没时间解释了完成签到 ,获得积分10
8分钟前
研友_Lw4Ngn发布了新的文献求助10
8分钟前
研友_Lw4Ngn完成签到,获得积分10
8分钟前
happyxuexi完成签到,获得积分10
8分钟前
点点完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346870
求助须知:如何正确求助?哪些是违规求助? 4481246
关于积分的说明 13947502
捐赠科研通 4379278
什么是DOI,文献DOI怎么找? 2406270
邀请新用户注册赠送积分活动 1398843
关于科研通互助平台的介绍 1371742