Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals

医学 队列 肝细胞癌 比例危险模型 随机森林 机器学习 危险系数 支持向量机 判别式 人工智能 肿瘤科 内科学 计算机科学 置信区间
作者
Tatsuya Minami,Masaya Sato,Hidenori Toyoda,Satoshi Yasuda,Tomoharu Yamada,T. Nakatsuka,Kenichiro Enooku,Hayato Nakagawa,Hidetaka Fujinaga,Masashi Izumiya,Yasuo Tanaka,Motoyuki Otsuka,Takamasa Ohki,Masahiro Arai,Yoshinari Asaoka,Atsushi Tanaka,Kiyomi Yasuda,Hideaki Miura,Itsuro Ogata,Toshiro Kamoshida
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:79 (4): 1006-1014 被引量:21
标识
DOI:10.1016/j.jhep.2023.05.042
摘要

Accurate risk stratification for hepatocellular carcinoma (HCC) after achieving a sustained viral response (SVR) is necessary for optimal surveillance. We aimed to develop and validate a machine learning (ML) model to predict the risk of HCC after achieving an SVR in individual patients.In this multicenter cohort study, 1742 patients with chronic hepatitis C who achieved an SVR were enrolled. Five ML models were developed including DeepSurv, gradient boosting survival analysis, random survival forest (RSF), survival support vector machine, and a conventional Cox proportional hazard model. Model performance was evaluated using Harrel' c-index and was externally validated in an independent cohort (977 patients).During the mean observation period of 5.4 years, 122 patients developed HCC (83 in the derivation cohort and 39 in the external validation cohort). The RSF model showed the best discrimination ability using seven parameters at the achievement of an SVR with a c-index of 0.839 in the external validation cohort and a high discriminative ability when the patients were categorized into three risk groups (P <0.001). Furthermore, this RSF model enabled the generation of an individualized predictive curve for HCC occurrence for each patient with an app available online.We developed and externally validated an RSF model with good predictive performance for the risk of HCC after an SVR. The application of this novel model is available on the website. This model could provide the data to consider an effective surveillance method. Further studies are needed to make recommendations for surveillance policies tailored to the medical situation in each country.A novel prediction model for HCC occurrence in patients after hepatitis C virus eradication was developed using machine learning algorithms. This model, using seven commonly measured parameters, has been shown to have a good predictive ability for HCC development and could provide a personalized surveillance system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助好好采纳,获得10
2秒前
情怀应助小森华东采纳,获得10
2秒前
chitanggo发布了新的文献求助10
3秒前
4秒前
李爱国应助channing采纳,获得10
4秒前
4秒前
深情安青应助隐形的雪碧采纳,获得10
4秒前
5秒前
wang发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
小明应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
8秒前
曾婉之小汁完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
8秒前
噜噜噜发布了新的文献求助10
8秒前
Spike完成签到,获得积分10
8秒前
城市跑車发布了新的文献求助10
9秒前
huang完成签到,获得积分10
9秒前
9秒前
科研通AI6应助andrele采纳,获得10
10秒前
wxy发布了新的文献求助10
10秒前
酷波er应助Yara.H采纳,获得10
10秒前
烟花应助苏芋采纳,获得10
10秒前
12123浪发布了新的文献求助10
11秒前
mikasa发布了新的文献求助10
11秒前
ggst发布了新的文献求助10
11秒前
12秒前
浮游应助学术甜菜采纳,获得10
12秒前
柔弱又夏完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393938
求助须知:如何正确求助?哪些是违规求助? 4515293
关于积分的说明 14053437
捐赠科研通 4426472
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529