Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals

医学 队列 肝细胞癌 比例危险模型 随机森林 机器学习 危险系数 支持向量机 判别式 人工智能 肿瘤科 内科学 计算机科学 置信区间
作者
Tatsuya Minami,Masaya Sato,Hidenori Toyoda,Satoshi Yasuda,Tomoharu Yamada,T. Nakatsuka,Kenichiro Enooku,Hayato Nakagawa,Hidetaka Fujinaga,Masashi Izumiya,Yasuo Tanaka,Motoyuki Otsuka,Takamasa Ohki,Masahiro Arai,Yoshinari Asaoka,Atsushi Tanaka,Kiyomi Yasuda,Hideaki Miura,Itsuro Ogata,Toshiro Kamoshida
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:79 (4): 1006-1014 被引量:21
标识
DOI:10.1016/j.jhep.2023.05.042
摘要

Accurate risk stratification for hepatocellular carcinoma (HCC) after achieving a sustained viral response (SVR) is necessary for optimal surveillance. We aimed to develop and validate a machine learning (ML) model to predict the risk of HCC after achieving an SVR in individual patients.In this multicenter cohort study, 1742 patients with chronic hepatitis C who achieved an SVR were enrolled. Five ML models were developed including DeepSurv, gradient boosting survival analysis, random survival forest (RSF), survival support vector machine, and a conventional Cox proportional hazard model. Model performance was evaluated using Harrel' c-index and was externally validated in an independent cohort (977 patients).During the mean observation period of 5.4 years, 122 patients developed HCC (83 in the derivation cohort and 39 in the external validation cohort). The RSF model showed the best discrimination ability using seven parameters at the achievement of an SVR with a c-index of 0.839 in the external validation cohort and a high discriminative ability when the patients were categorized into three risk groups (P <0.001). Furthermore, this RSF model enabled the generation of an individualized predictive curve for HCC occurrence for each patient with an app available online.We developed and externally validated an RSF model with good predictive performance for the risk of HCC after an SVR. The application of this novel model is available on the website. This model could provide the data to consider an effective surveillance method. Further studies are needed to make recommendations for surveillance policies tailored to the medical situation in each country.A novel prediction model for HCC occurrence in patients after hepatitis C virus eradication was developed using machine learning algorithms. This model, using seven commonly measured parameters, has been shown to have a good predictive ability for HCC development and could provide a personalized surveillance system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123应助雷涵晶采纳,获得10
1秒前
1秒前
Bai_shao完成签到,获得积分10
1秒前
2秒前
Daily发布了新的文献求助10
2秒前
阳佟水蓉完成签到,获得积分10
2秒前
2秒前
英姑应助鲜艳的手链采纳,获得10
3秒前
3秒前
3秒前
4秒前
欣欣完成签到 ,获得积分10
4秒前
香蕉觅云应助龚仕杰采纳,获得10
4秒前
淡淡芷天应助球球采纳,获得10
4秒前
Zhang完成签到,获得积分10
4秒前
邱雪辉完成签到,获得积分10
4秒前
5秒前
隐形曼青应助刘欣采纳,获得10
5秒前
newsl完成签到,获得积分10
5秒前
6秒前
6秒前
隐形曼青应助yy湫采纳,获得10
6秒前
shalom完成签到,获得积分10
6秒前
Hello应助yier采纳,获得10
7秒前
默默发布了新的文献求助10
7秒前
7秒前
浮浮世世发布了新的文献求助10
7秒前
8秒前
吕坏发布了新的文献求助10
8秒前
WZQ发布了新的文献求助10
8秒前
佳佳528发布了新的文献求助10
8秒前
甜甜的向雪完成签到,获得积分10
8秒前
8秒前
9秒前
鲤鱼香发布了新的文献求助10
9秒前
9秒前
9秒前
小新完成签到,获得积分10
9秒前
9秒前
科研通AI6应助sa采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454