Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals

医学 队列 肝细胞癌 比例危险模型 随机森林 机器学习 危险系数 支持向量机 判别式 人工智能 肿瘤科 内科学 计算机科学 置信区间
作者
Tatsuya Minami,Masaya Sato,Hidenori Toyoda,Satoshi Yasuda,Tomoharu Yamada,T. Nakatsuka,Kenichiro Enooku,Hayato Nakagawa,Hidetaka Fujinaga,Masashi Izumiya,Yasuo Tanaka,Motoyuki Otsuka,Takamasa Ohki,Masahiro Arai,Yoshinari Asaoka,Atsushi Tanaka,Kiyomi Yasuda,Hideaki Miura,Itsuro Ogata,Toshiro Kamoshida
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:79 (4): 1006-1014 被引量:21
标识
DOI:10.1016/j.jhep.2023.05.042
摘要

Accurate risk stratification for hepatocellular carcinoma (HCC) after achieving a sustained viral response (SVR) is necessary for optimal surveillance. We aimed to develop and validate a machine learning (ML) model to predict the risk of HCC after achieving an SVR in individual patients.In this multicenter cohort study, 1742 patients with chronic hepatitis C who achieved an SVR were enrolled. Five ML models were developed including DeepSurv, gradient boosting survival analysis, random survival forest (RSF), survival support vector machine, and a conventional Cox proportional hazard model. Model performance was evaluated using Harrel' c-index and was externally validated in an independent cohort (977 patients).During the mean observation period of 5.4 years, 122 patients developed HCC (83 in the derivation cohort and 39 in the external validation cohort). The RSF model showed the best discrimination ability using seven parameters at the achievement of an SVR with a c-index of 0.839 in the external validation cohort and a high discriminative ability when the patients were categorized into three risk groups (P <0.001). Furthermore, this RSF model enabled the generation of an individualized predictive curve for HCC occurrence for each patient with an app available online.We developed and externally validated an RSF model with good predictive performance for the risk of HCC after an SVR. The application of this novel model is available on the website. This model could provide the data to consider an effective surveillance method. Further studies are needed to make recommendations for surveillance policies tailored to the medical situation in each country.A novel prediction model for HCC occurrence in patients after hepatitis C virus eradication was developed using machine learning algorithms. This model, using seven commonly measured parameters, has been shown to have a good predictive ability for HCC development and could provide a personalized surveillance system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHQ发布了新的文献求助10
刚刚
zhn发布了新的文献求助10
刚刚
Shan完成签到,获得积分10
1秒前
花火发布了新的文献求助10
1秒前
任白993发布了新的文献求助10
1秒前
香精发布了新的文献求助10
1秒前
2秒前
wwwww发布了新的文献求助10
2秒前
3秒前
小马甲应助shee采纳,获得30
3秒前
3秒前
醉仙发布了新的文献求助10
4秒前
满意芝麻发布了新的文献求助10
5秒前
练习者完成签到,获得积分10
5秒前
5秒前
6秒前
libiqing77发布了新的文献求助10
6秒前
6秒前
Jke完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
红红发布了新的文献求助20
7秒前
TianBa123发布了新的文献求助10
8秒前
倪倪倪完成签到,获得积分10
9秒前
9秒前
啦啦啦发布了新的文献求助10
9秒前
9秒前
醉仙完成签到,获得积分10
9秒前
10秒前
ZHQ完成签到,获得积分10
10秒前
10秒前
华仔应助饱满的毛巾采纳,获得10
10秒前
10秒前
11秒前
善学以致用应助galioo3000采纳,获得10
11秒前
科研通AI5应助Wen采纳,获得10
11秒前
11秒前
温暖夏青完成签到,获得积分10
11秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4090
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Sea Surface Kinematics From Near-Nadir Radar Measurements 800
J'AI COMBATTU POUR MAO // ANNA WANG 660
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3751904
求助须知:如何正确求助?哪些是违规求助? 3295454
关于积分的说明 10090631
捐赠科研通 3010485
什么是DOI,文献DOI怎么找? 1653185
邀请新用户注册赠送积分活动 788090
科研通“疑难数据库(出版商)”最低求助积分说明 752591