Online User Recruitment With Adaptive Budget Segmentation in Sparse Mobile Crowdsensing

计算机科学 拥挤感测 分割 移动计算 人工智能 计算机网络 计算机安全
作者
Xianwei Guo,Chunyu Tu,Yongtao Hao,Zhiyong Yu,Fangwan Huang,Leye Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8526-8538 被引量:1
标识
DOI:10.1109/jiot.2023.3318817
摘要

Sparse mobile crowdsensing (MCS) is a cost-effective data collection paradigm that aims to recruit users to collect data from a part of sensing subareas and infer the rest. In a more realistic scenario, users participate in real-time and collect data along the way. For missing data inference, the significance of data collected from different subareas often varies over time. However, since users' trajectories are uncertain, recruiting users who can cover important spatio-temporal subareas presents a challenge. Additionally, how to segment the budget wisely during recruitment is another challenge. To tackle these challenges, we propose a dual reinforcement learning (RL)-based online user recruitment strategy with adaptive budget segmentation, called DualRL-U, which consists of two alternating decision steps, i.e., the user recruitment decision and the budget retention decision. Specifically, for the user recruitment decision, we use RL to connect the user with data inference accuracy to estimate their contributions. For the budget retention decision, we use RL to connect the budget with the number of times the user can sense to evaluate the cost effectiveness. In this way, a dual RL model is constructed to achieve effective recruitment by alternately executing user recruitment decisions and budget retention decisions. Extensive experiments on real-world sensing data sets show the effectiveness of DualRL-U.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
m_seek发布了新的文献求助10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
1秒前
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得150
1秒前
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
斯文黎云发布了新的文献求助50
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
xuanqing完成签到,获得积分10
3秒前
3秒前
汉堡包应助lily采纳,获得10
4秒前
Arron发布了新的文献求助10
4秒前
Tom完成签到,获得积分10
4秒前
布鲁塞尔土豆完成签到,获得积分10
5秒前
5秒前
5秒前
李健应助小鱼采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452