Graph neural networks with deep mutual learning for designing multi-modal recommendation systems

计算机科学 情态动词 二部图 推论 机器学习 人工智能 模式 特征学习 图形 推荐系统 深度学习 理论计算机科学 社会科学 化学 社会学 高分子化学
作者
Jianing Li,Chaoqun Yang,Guanhua Ye,Quoc Viet Hung Nguyen
出处
期刊:Information Sciences [Elsevier]
卷期号:654: 119815-119815 被引量:21
标识
DOI:10.1016/j.ins.2023.119815
摘要

Recommendation services play a pivotal role in financial decision-making and multimedia content services, as they suggest investment operations and personalized items to users, typically characterized by multi-modal features such as visual, textual, and acoustic attributes. Graph Neural Networks (GNNs), demonstrating the immense potential for graph representation learning and recommendation systems, are capable of learning user/item embeddings by taking into account the graph topological structure and the multi-modal node features. Yet, a substantial number of multi-modal recommendation studies have seemingly ignored the inherent bias among different modalities during feature fusion, consequently leading to sub-optimal embeddings for items with multi-modal features. To mitigate this issue, we propose a novel multi-modal recommendation framework that integrates GNNs with deep mutual learning techniques, termed GNNMR. GNNMR uses the mutual knowledge distillation technique to collaboratively train multiple uni-modal bipartite user-item graphs. Each GNN is trained specifically on the uni-modal user-item bipartite graph, which is separated from the original multi-modal user-item bipartite graph, to generate uni-modal embeddings. These uni-modal embeddings then act as mutual supervision signals, allowing the model to uncover and synchronize the latent semantic relationships among different modalities. Subsequently, the model can conduct inference in an ensemble manner, leveraging uni-modal embeddings from diverse modalities. Experimental results on two real-world datasets demonstrate that the proposed GNNMR outperforms other multi-modal recommendation methods in the Top-K recommendation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ychao应助Prism_hua采纳,获得10
刚刚
水三寿发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
4秒前
mori完成签到,获得积分10
4秒前
ddd133完成签到,获得积分20
6秒前
落后的天蓝完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
李爱国应助达古冰川采纳,获得10
9秒前
浮生发布了新的文献求助10
9秒前
飞飞发布了新的文献求助10
9秒前
lxaz完成签到,获得积分10
10秒前
10秒前
科研通AI5应助体贴花卷采纳,获得10
10秒前
关我屁事发布了新的文献求助10
11秒前
风中子轩发布了新的文献求助10
12秒前
水三寿完成签到,获得积分20
14秒前
14秒前
ddd133发布了新的文献求助50
14秒前
yan1e发布了新的文献求助10
15秒前
15秒前
16秒前
花开富贵完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
墨墨完成签到,获得积分20
18秒前
19秒前
意志所向发布了新的文献求助10
20秒前
宋晓蓝完成签到,获得积分10
21秒前
浮生发布了新的文献求助10
23秒前
花开富贵发布了新的文献求助10
24秒前
25秒前
失眠的仙人掌完成签到,获得积分10
26秒前
slk完成签到 ,获得积分10
27秒前
意志所向完成签到,获得积分10
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009