算法
独特性
类型(生物学)
狄拉克三角函数
计算机科学
数学
数学分析
地质学
古生物学
出处
期刊:Quarterly of Applied Mathematics
[American Mathematical Society]
日期:2023-10-27
卷期号:82 (4): 735-787
摘要
In this paper we consider a modified quantum Boltzmann equation with the quantum effect measured by a continuous parameter δ \delta that can decrease from δ = 1 \delta =1 for the Fermi-Dirac particles to δ = 0 \delta =0 for the classical particles. In case of soft potentials, for the corresponding Cauchy problem in the whole space or in the torus, we establish the global existence and uniqueness of non-negative mild solutions in the function space L T ∞ L v , x ∞ ∩ L T ∞ L x ∞ L v 1 L^{\infty }_{T}L^{\infty }_{v,x}\cap L^{\infty }_{T}L^{\infty }_{x}L^1_v with small defect mass, energy and entropy but allowed to have large amplitude up to the possibly maximum upper bound F ( t , x , v ) ≤ 1 δ F(t,x,v)\leq \frac {1}{\delta } . The key point is that the obtained estimates are uniform in the quantum parameter 0 > δ ≤ 1 0> \delta \leq 1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI