砷
镉
化学
锰铁
海泡石
环境修复
环境化学
修正案
土壤污染
吸附
糙米
核化学
污染
动物科学
土壤水分
食品科学
环境科学
土壤科学
生物
锰
有机化学
政治学
法学
原材料
生态学
作者
Shen Zheng,Chao Xu,Zunchang Luo,Hanhua Zhu,Hui Wang,Quan Zhang,Qihong Zhu,Daoyou Huang
标识
DOI:10.1016/j.scitotenv.2023.168269
摘要
Cadmium (Cd) and arsenic (As), common toxic elements in farmland soil, are easily absorbed by rice and accumulate in grains. Combined amendment is likely to ameliorate Cd-As-contaminated soil; however, studies on this aspect are limited. Therefore, we explored the effects of co-utilizing sepiolite and ferromanganese ore (SF) on Cd-As accumulation in rice by conducting pot experiments on Cd-As-contaminated paddy soil. The results showed that 4 g kg−1 SF (4SF) reduced Cd (55.9 %/48.5 %) and As (82.9 %/64.7 %) concentrations in grain in early and late rice. The Fe concentration in Fe-Mn plaque (IMP) (FeIMP) first decreased and then increased, and the Mn concentration in IMP (MnIMP) increased with an increase in the SF addition amount. This resulted in the 4SF treatment maximizing the Cd adsorption capacity of IMP, whereas the 2 g kg−1 SF treatment (2SF) minimized the As adsorption capacity of IMP. More importantly, when the total Cd and As were 9.7 mg kg−1 and 304.2 mg kg−1, respectively, in the soil, 4SF application reduced CaCl2-extractable Cd (80.5 %/87.9 %), and 2SF reduced available As (24.0 %/20.9 %) in early and late rice. Additionally, SF decreased the Cd and As ion contents in soil pore water. Overall, SF has good immobilization and sustained effect on Cd-As and can be used as an effective material for remediation of Cd-As-contaminated soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI