Quantum annealing algorithm for fault section location in distribution networks

计算机科学 模拟退火 量子退火 算法 哈密顿量(控制论) 量子隧道 能源消耗 量子计算机 分布估计算法 量子 数学优化 数学 物理 量子力学 电气工程 工程类
作者
Zhongqin Bi,Xiaoting Yang,Baonan Wang,Weina Zhang,Zhen Dong,Dan Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:149: 110973-110973 被引量:1
标识
DOI:10.1016/j.asoc.2023.110973
摘要

As the last link of the power system, the distribution network is responsible for ensuring stable power consumption and improving power quality. Therefore, a more reliable and fast fault section location(FSL) method is essential for the stable operation and optimization of distribution networks. In this context, this paper adopts an effective method to apply the quantum annealing algorithm(QA) based on the quantum tunneling mechanism to the distribution network fault section location problem. A quantum Hamiltonian function consisting of potential and kinetic energy terms is constructed based on the theoretical knowledge of QA. Among them, FSL objective function is mapped to the potential energy term, and the transverse magnetic field is introduced to construct the kinetic energy term, which can realize the quantum tunneling effect and approximate or even reach the global optimal solution. Based on the quantum Hamiltonian function construction, this paper modifies some parameters in the QA framework to propose an improved quantum annealing algorithm(IQA) to improve the accuracy. In the two test systems of IEEE 33-node distribution network and IEEE 33-node distribution network with distributed generation sources(DGs), QA and IQA are compared and analyzed with other intelligent algorithms using the average number of iterations and localization accuracy as indicators. We find that QA is more likely to obtain the global optimal solution compared with the simulated annealing algorithm(SA). IQA can search for faulty sections with 100% accuracy and the least number of average iterations in both single power distribution networks and distribution networks containing DGs. Under the scenarios of fault signal distortion and increasing fault sections, IQA shows superb competitive advantages by exhibiting good fault tolerance performance, global optimal search capability and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白宝宝北北白应助dfggg采纳,获得10
1秒前
阳光海云发布了新的文献求助50
1秒前
小胖鱼关注了科研通微信公众号
1秒前
昏睡的眼神完成签到 ,获得积分10
1秒前
NexusExplorer应助南乔采纳,获得10
1秒前
杜嘟嘟发布了新的文献求助10
1秒前
完美世界应助April采纳,获得10
2秒前
提手旁辰完成签到,获得积分20
2秒前
能干的邹完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
酒九完成签到,获得积分10
3秒前
刺槐完成签到,获得积分10
3秒前
Owen应助LLKK采纳,获得30
5秒前
5秒前
5秒前
6秒前
苏鱼完成签到 ,获得积分10
6秒前
恋空完成签到 ,获得积分10
6秒前
曲终人散完成签到,获得积分10
7秒前
wu发布了新的文献求助10
7秒前
wintercyan完成签到,获得积分10
7秒前
9秒前
9秒前
妮儿发布了新的文献求助10
9秒前
9秒前
MADKAI发布了新的文献求助10
10秒前
insane完成签到,获得积分10
10秒前
云儿发布了新的文献求助20
10秒前
Jasper应助哲999采纳,获得10
10秒前
wanci应助拟拟采纳,获得10
11秒前
王超超完成签到,获得积分10
11秒前
11秒前
圈圈发布了新的文献求助10
12秒前
狼来了aas完成签到,获得积分10
12秒前
12秒前
大胆的莛发布了新的文献求助10
13秒前
文静的信封完成签到,获得积分10
13秒前
CipherSage应助wu采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740