Performance evaluation of a walking-type piezoelectric actuator with compliant mechanism for wide-range speed driving and high-precision positioning

执行机构 旋转致动器 电压 机制(生物学) 控制理论(社会学) 流离失所(心理学) 相(物质) 声学 工程类 计算机科学 物理 电气工程 人工智能 量子力学 心理学 心理治疗师 控制(管理)
作者
Hao Yun,Manabu Aoyagi
出处
标识
DOI:10.1016/j.precisioneng.2023.09.012
摘要

To achieve a wide operating velocity range, stepping without backward motion, and high positioning resolution, a walking-type piezoelectric actuator with compliant mechanisms is developed. There are few academic research reports on this type of actuator, and this paper clarifies the features and advantages of this actuator. A systematic modeling and experimental evaluation of the proposed actuator are carried out. First, the configuration of the proposed actuator and the working principle of the alternating elliptical movements of the two driving feet are described. Then, dynamic models are built to simulate the output characteristics of the proposed actuator with in-phase and opposite-phase drive, which provide guidance for the design and optimization of walking-type actuators. An actuator prototype is fabricated and experimentally evaluated. The experimental results indicate that, under the opposite-phase drive, the proposed actuator can operate at a driving frequency of 1–15000 Hz. At a frequency of 14000 Hz, a maximum velocity of 24.6 mm/s is achieved at a voltage of 36 Vpp, and the dead zone of the actuator is 0–6 Vpp. A step displacement of 2.25 μm without backward motion is accomplished at a voltage of 72 Vpp and a frequency of 1 Hz. Furthermore, the positioning resolution in the forward and reverse directions are 144 and 152 nm, respectively. The repeatability of the actuator is ±25 to ±50 nm for strokes of 325–725 nm, respectively. Therefore, compared to two driving feet being driven in phase, driving them in opposite phase as if they were walking has been confirmed to increase thrust, shorten the rise time, reduce the dead zone of driving voltage, eliminate backward motion, and provide high repeatability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爱听歌雨真完成签到,获得积分10
1秒前
1秒前
Amai发布了新的文献求助20
2秒前
酷酷凤灵发布了新的文献求助10
2秒前
3秒前
风雨1210完成签到,获得积分10
3秒前
抗压兔完成签到 ,获得积分10
3秒前
chillin发布了新的文献求助10
3秒前
阳尧发布了新的文献求助10
4秒前
天天快乐应助troubadourelf采纳,获得10
4秒前
勤恳慕蕊发布了新的文献求助10
5秒前
5秒前
kxy完成签到,获得积分10
8秒前
8秒前
婧婧完成签到 ,获得积分10
8秒前
9秒前
10秒前
左友铭完成签到 ,获得积分10
10秒前
sweetbearm应助通~采纳,获得10
10秒前
AKLIZE完成签到,获得积分10
10秒前
刘大妮完成签到,获得积分10
11秒前
clean完成签到,获得积分20
12秒前
Lucas发布了新的文献求助10
12秒前
12秒前
朴实以松发布了新的文献求助10
12秒前
感谢橘子转发科研通微信,获得积分50
12秒前
围炉煮茶完成签到,获得积分10
13秒前
13秒前
云锋发布了新的文献求助10
14秒前
兴奋的问旋应助务实盼海采纳,获得10
14秒前
李秋静发布了新的文献求助10
14秒前
14秒前
无花果应助cookie采纳,获得10
15秒前
15秒前
斯文败类应助阳尧采纳,获得10
15秒前
16秒前
16秒前
abjz完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794