Machine learning-based nonlinear regression-adjusted real-time quality control modeling: a multi-center study

概化理论 机器学习 计算机科学 人工智能 人口 回归 线性回归 过度拟合 控制限值 控制图 统计 过程(计算) 数学 医学 人工神经网络 环境卫生 操作系统
作者
Yufang Liang,Andrea Padoan,Zhe Wang,Chao Chen,Qingtao Wang,Mario Plebani,Rui Zhou
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
被引量:7
标识
DOI:10.1515/cclm-2023-0964
摘要

Abstract Objectives Patient-based real-time quality control (PBRTQC), a laboratory tool for monitoring the performance of the testing process, has gained increasing attention in recent years. It has been questioned for its generalizability among analytes, instruments, laboratories, and hospitals in real-world settings. Our purpose was to build a machine learning, nonlinear regression-adjusted, patient-based real-time quality control (mNL-PBRTQC) with wide application. Methods Using computer simulation, artificial biases were added to patient population data of 10 measurands. An mNL-PBRTQC was created using eight hospital laboratory databases as a training set and validated by three other hospitals’ independent patient datasets. Three different Patient-based models were compared on these datasets, the IFCC PBRTQC model, linear regression-adjusted real-time quality control (L-RARTQC), and the mNL-PBRTQC model. Results Our study showed that in the three independent test data sets, mNL-PBRTQC outperformed the IFCC PBRTQC and L-RARTQC for all measurands and all biases. Using platelets as an example, it was found that for 20 % bias, both positive and negative, the uncertainty of error detection for mNL-PBRTQC was smallest at the median and maximum values. Conclusions mNL-PBRTQC is a robust machine learning framework, allowing accurate error detection, especially for analytes that demonstrate instability and for detecting small biases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搬石头发布了新的文献求助10
1秒前
高挑的谷槐完成签到,获得积分20
2秒前
共享精神应助lll采纳,获得10
2秒前
xuxuxu完成签到,获得积分10
4秒前
科研通AI2S应助DianaRang采纳,获得10
5秒前
YL完成签到,获得积分10
7秒前
自信的谷南完成签到,获得积分10
8秒前
AYEFORBIDER完成签到,获得积分10
9秒前
9秒前
9秒前
zry完成签到,获得积分10
10秒前
fyjlfy完成签到 ,获得积分10
11秒前
zho应助Ning采纳,获得10
11秒前
didoo发布了新的文献求助10
14秒前
16秒前
Avery完成签到 ,获得积分10
16秒前
哟西完成签到,获得积分10
17秒前
19秒前
20秒前
wa_wa_wa完成签到,获得积分20
22秒前
didoo完成签到,获得积分10
22秒前
23秒前
大巧若拙完成签到,获得积分10
25秒前
25秒前
25秒前
哇哈哈哈完成签到,获得积分10
25秒前
26秒前
华西招生版完成签到,获得积分10
28秒前
cc完成签到 ,获得积分10
28秒前
DianaRang发布了新的文献求助10
28秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得30
30秒前
30秒前
30秒前
研友_VZG7GZ应助wa_wa_wa采纳,获得10
31秒前
32秒前
粉色娇嫩你如今几岁关注了科研通微信公众号
32秒前
32秒前
研友_LX7lK8发布了新的文献求助10
35秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122926
求助须知:如何正确求助?哪些是违规求助? 2773264
关于积分的说明 7717277
捐赠科研通 2428810
什么是DOI,文献DOI怎么找? 1290047
科研通“疑难数据库(出版商)”最低求助积分说明 621693
版权声明 600203