Construction of High-Active SERS Cavities in a TiO2 Nanochannels-Based Membrane: A Selective Device for Identifying Volatile Aldehyde Biomarkers

拉曼散射 分析物 拉曼光谱 纳米技术 基质(水族馆) 表面增强拉曼光谱 胶体金 材料科学 分子 纳米颗粒 气体分析呼吸 化学 色谱法 有机化学 物理 地质学 光学 海洋学 生物化学
作者
Jing Xu,Ying Xu,Junhan Li,Junjian Zhao,Xiaoxia Jian,Jingwen Xu,Zhida Gao,Yan‐Yan Song
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (9): 3487-3497 被引量:13
标识
DOI:10.1021/acssensors.3c01061
摘要

The accurate, sensitive, and selective on-site screening of volatile aldehyde biomarkers for lung cancer is of utmost significance for preclinical cancer diagnosis and treatment. Applying surface-enhanced Raman scattering (SERS) for gas sensing remains difficult due to the small Raman cross section of most gaseous molecules and interference from other components in exhaled breath. Using an Au asymmetrically coated TiO2 nanochannel membrane (Au/TiO2 NM) as the substrate, a ZIF-8-covered Au/TiO2 NM SERS sensing substrate is designed for the detection of exhaled volatile organic compounds (VOCs). Au/TiO2 NM provides uniformly amplified Raman signals for trace measurements in this design. Importantly, the interfacial nanocavities between Au nanoparticles (NPs) and metal-organic frameworks (MOFs) served as gaseous confinement cavities, which is the key to enhancing the capture and adsorption ability toward gaseous analytes. Both ends of the membrane are left open, allowing gas molecules to pass through. This facilitates the diffusion of gaseous molecules and efficient capture of the target analyte. Using benzaldehyde as a typical gas marker model of lung cancer, the Schiff base reaction with a Raman-active probe molecule 4-aminothiophene (4-ATP) pregrafted on Au NPs enabled trace and multicomponent detection. Moreover, the combination of machine learning (ML) and Raman spectroscopy eliminates subjective assessments of gaseous aldehyde species with the use of a single feature peak, allowing for more accurate identification. This membrane sensing device offers a promising design for the development of a desktop SERS analysis system for lung cancer point-of-care testing (POCT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助TT采纳,获得10
2秒前
3秒前
3秒前
英姑应助荒野星辰采纳,获得10
5秒前
5秒前
YHY完成签到,获得积分10
7秒前
科研通AI5应助魏伯安采纳,获得10
7秒前
caoyy发布了新的文献求助10
7秒前
8秒前
9秒前
张喻235532完成签到,获得积分10
10秒前
失眠虔纹发布了新的文献求助10
11秒前
香蕉觅云应助糊涂的小伙采纳,获得10
11秒前
11秒前
sutharsons应助科研通管家采纳,获得200
13秒前
打打应助科研通管家采纳,获得10
13秒前
axin应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
lu应助科研通管家采纳,获得10
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
研友_MLJldZ发布了新的文献求助10
14秒前
wys完成签到 ,获得积分10
15秒前
16秒前
michaelvin完成签到,获得积分10
16秒前
学术大白完成签到 ,获得积分10
19秒前
19秒前
SYT完成签到,获得积分10
20秒前
21秒前
23秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849