地下水
含水层
环境化学
六价铬
微生物种群生物学
生态学
环境科学
化学
地质学
生物
细菌
铬
古生物学
岩土工程
有机化学
作者
Wendi Fan,Sen Yan,Linqiang Mao,Wei Xiu,Yi Zhao,Huaming Guo
标识
DOI:10.1016/j.watres.2023.120545
摘要
Geogenic high hexavalent chromium [Cr(Ⅵ)] in groundwater is a global environmental problem. However, the groundwater microbiome and its linkage to geogenic high Cr(Ⅵ) from deep aquifers still need to be elucidated. Here, we evaluated geogenic Cr(Ⅵ), groundwater microbiome with featured functional ecological clusters and their interactive responses in groundwater from a deep aquifer in a loess plateau of Northern Shaanxi, China. We found that the compositions and structures of microbial communities in groundwater from the deep aquifer were significantly different between low Cr(Ⅵ) (LCG, < 50 μg/L) and high Cr(Ⅵ) groundwater (HCG, > 50 μg/L), with higher microbial diversity and richness in HCG (p < 0.05). Functional "specialists" related to Cr biotransformation, including Cr(Ⅵ) reducing bacteria (CRB) Rhodococcus, Nocardioides, Novosphingobium, and Acidovorax and Mn-oxidizing bacteria (MnOB) Sphingobium, and Ralstonia were positively correlated to total Cr and Cr(VI) concentrations in groundwater. Moreover, these CRB and MnOB were dominant in high Cr(VI) groundwater and associated by strong interspecific relation in an ecological cluster (p < 0.05), suggesting their indicator roles for high Cr(Ⅵ) and the contribution of MnOB mediated Cr(III) oxidation to Cr(VI) enrichment. RDA and path analysis further revealed that the geogenic Cr(Ⅵ) directly promoted the key Cr-related functional cluster with the groundwater depth, dissolved oxygen, and total dissolved solids as the cofactors indirectly influencing Cr(Ⅵ) and the functional clusters (p < 0.05). Collectively, our results highlight the significant roles of microbial ecological clusters especially functional "specialists" MnOB and CRB in groundwater Cr(Ⅵ) from deep aquifers in the loess plateau and provide a basis for sustainable management of high Cr(Ⅵ) groundwater.
科研通智能强力驱动
Strongly Powered by AbleSci AI