Deep Learning for Metasurfaces and Metasurfaces for Deep Learning

计算机科学 多极展开 人工神经网络 深度学习 卷积神经网络 光子学 超材料 神经形态工程学 光学计算 人工智能 物理 光学 量子力学
作者
Clayton Fowler,Sensong An,Bowen Zheng,Hualiang Zhang
标识
DOI:10.1002/9781119853923.ch10
摘要

Huygens' metasurfaces have emerged as a powerful means with which to manipulate incident light on a subwavelength scale and thus can be utilized for a broad range of applications in optical devices. Such optical devices have the potential to be more compact, multi-functional, more efficient, and possess novel functionalities as compared to the current state of optics. These metasurfaces are composed of subwavelength dielectric structures (meta-atoms) with a large index of refraction relative to vacuum. The high index allows the meta-atoms to support a variety of magnetic and electric multipole resonances that alter the amplitude and phase of light and can be tuned by changing the shape of the meta-atom. The electromagnetic response of a meta-atom for a given shape is difficult to predict analytically, and it is computationally intensive to optimize them with full-wave simulations, and so sophisticated methods are needed to maximize the design potential of Huygens' surfaces. Deep neural network methods have been demonstrated to be effective for both yielding results much more quickly than full wave simulations and for finding meta-atoms to meet specific design requirements (inverse-design). We present a selection of neural network architectures that have been successful for Huygens' surface design, including fully connected neural networks, convolutional neural networks, recurrent neural networks, and generative adversarial networks. Lastly, we discuss neuromorphic photonics, wherein the meta-atoms can be used to physically construct neural networks for optical computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暄暄发布了新的文献求助10
刚刚
满意的匪完成签到 ,获得积分10
1秒前
沐雨发布了新的文献求助10
1秒前
2秒前
搜集达人应助DARKNESS采纳,获得10
4秒前
善学以致用应助威武冷雪采纳,获得10
6秒前
7秒前
高贵季节发布了新的文献求助10
8秒前
风趣秋白完成签到,获得积分10
9秒前
9秒前
半岛岛发布了新的文献求助10
10秒前
mochi发布了新的文献求助10
12秒前
科研通AI2S应助欢喜发卡采纳,获得10
12秒前
Solar energy发布了新的文献求助10
14秒前
懵懂的愫完成签到 ,获得积分10
14秒前
庸尘完成签到,获得积分10
15秒前
阳和启蛰完成签到,获得积分10
16秒前
Fjj完成签到,获得积分20
17秒前
李健应助无私的鸣凤采纳,获得30
18秒前
bkagyin应助mochi采纳,获得10
20秒前
21秒前
22秒前
可爱邓邓完成签到 ,获得积分10
23秒前
Karinaa发布了新的文献求助10
26秒前
11发布了新的文献求助10
27秒前
李健应助俭朴的世立采纳,获得10
27秒前
沐雨完成签到,获得积分20
28秒前
Liziqi823完成签到,获得积分10
28秒前
skyla1003完成签到 ,获得积分10
35秒前
37秒前
科研通AI2S应助牛诗悦采纳,获得10
42秒前
研友_aLjo9n完成签到,获得积分10
44秒前
44秒前
48秒前
48秒前
醉烟雨完成签到,获得积分10
48秒前
lcc应助东方天奇采纳,获得10
49秒前
陶醉的蜜蜂完成签到 ,获得积分10
50秒前
YanDongXu完成签到 ,获得积分10
52秒前
52秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140431
求助须知:如何正确求助?哪些是违规求助? 2791320
关于积分的说明 7798479
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302008
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194