GLFA-NET: A Hybrid Network for Mr-To-Ct Synthesis Via Global and Local Feature Aggregation

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 残余物 特征(语言学) 块(置换群论) 鉴别器 小波 算法 数学 探测器 几何学 语言学 电信 哲学
作者
Zeli Chen,Chuanpu Li,Kaiyi Zheng,Yiwen Zhang,Yuankui Wu,Qianjin Feng,Liming Zhong,Wei Yang
标识
DOI:10.1109/isbi53787.2023.10230486
摘要

Synthesis of Computed Tomography (CT) images from Magnetic Resonance (MR) images is clinical significance for MR-only treatment planning to eliminate the co-registration errors between MR and CT images. Existing convolutional neural network-based methods, suffering from the inherent local inductive biases, struggle to distinguish bone and air which show low signals in conventional MR images. ViT-based methods can learn long-range contextual information by a global self-attention mechanism but are limited by the quadratic complexity and generating local detailed structures. Combining the merits of these two architectures, we propose a hybrid network for MR-to-CT synthesis via global and local feature aggregation from Transformer and CNN, named GLFA-NET. Specifically, we add a global patch embedding branch to supplement the patch-based global representative features directly from the image and design a residual dilated swin transformer block aggregating the local detailed features and global features to improve the synthesis performance of bone and air and reduce computational overhead. Furthermore, we adopt a wavelet PatchGAN discriminator to enhance the high-frequency detailed information of the synthetic CT. Our GLFA-NET was implemented on a dataset with 154 pairs of 3D MR-CT head and neck images. Experiments show that our GLFA-NET achieves impressive performance with MAE of 71.12 ± 10.87, SSIM of 0.771 ± 0.028, and PSNR of 28.91 ± 1.33. The visual synthetic CT results also show that the proposed GLFA-NET method achieves better discrimination of bone and air and higher structural similarity than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
3秒前
yh完成签到,获得积分10
3秒前
4秒前
5秒前
万惜文发布了新的文献求助10
5秒前
汉堡包应助猪变成了蛾子采纳,获得10
5秒前
李健的粉丝团团长应助tyx采纳,获得10
6秒前
22给22的求助进行了留言
6秒前
6秒前
6秒前
7秒前
搬砖民工发布了新的文献求助10
7秒前
7秒前
无限向珊完成签到,获得积分10
7秒前
7秒前
Six_seven完成签到,获得积分10
7秒前
JamesPei应助从别后忆相逢采纳,获得10
8秒前
8秒前
god发布了新的文献求助10
9秒前
wcwzcz完成签到,获得积分10
10秒前
今后应助沉默的尔槐采纳,获得10
10秒前
残梦蝶发布了新的文献求助10
10秒前
re发布了新的文献求助10
10秒前
李爱国应助邵邵采纳,获得10
10秒前
扁桃体不发言完成签到,获得积分10
10秒前
英姑应助xiaobei88采纳,获得10
11秒前
12秒前
沧海一粟完成签到,获得积分10
12秒前
fzy发布了新的文献求助10
13秒前
程院发布了新的文献求助10
13秒前
爆米花应助沉默凡梦采纳,获得10
13秒前
东旭大兵发布了新的文献求助10
13秒前
herococa应助chengzi采纳,获得10
14秒前
老实怀蝶完成签到,获得积分10
14秒前
传奇3应助min采纳,获得10
14秒前
今后应助god采纳,获得10
15秒前
勤奋小懒虫完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089