A Box-Supervised Instance Segmentation Method for Insulator Infrared Images Based on Shuffle Polarized Self-Attention

人工智能 分割 计算机科学 绝缘体(电) 图像分割 计算机视觉 像素 模式识别(心理学) 材料科学 光电子学
作者
Jinhui Zhou,Guote Liu,Yu Gu,Yonghua Wen,Sijun Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:5
标识
DOI:10.1109/tim.2023.3311073
摘要

Infrared imaging technology, as an effective on-site condition monitoring means of equipment, is widely used in the maintenance task of insulators. Accurate segmentation of insulators in infrared images is of great significance for temperature data acquisition and fault diagnosis. The presence of multiple electrical devices in the infrared image substantially increases the difficulty of insulator instance segmentation. Moreover, segmentation methods based on pixel-level sample annotation consume a lot of time and resources. Therefore, a box-supervised instance segmentation method for insulator infrared images based on shuffle polarized self-attention is proposed. Firstly, an adaptive positive and negative sample matching mechanism is designed in an anchor-free detector, which adaptively adjusts the constraint range of sample matching according to the inherent characteristics of the insulator. Secondly, a shuffle polarized self-attention module is embedded in the mask branch to improve the segmentation accuracy of insulator infrared images by feature shuffling and polarized filtering. Thirdly, the insulator weakly supervised segmentation is realized with box annotations by introducing a pairwise loss term and a projection loss term in the training strategy. The experiments show that the proposed method displays superior segmentation performance compared with other advanced method algorithms, which can effectively improve the intelligence of insulator fault diagnosis in transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助粗犷的泥猴桃采纳,获得10
刚刚
刚刚
大个应助故意的乐菱采纳,获得10
1秒前
1秒前
2秒前
andy发布了新的文献求助10
2秒前
容容容发布了新的文献求助10
3秒前
星辰大海应助mmr采纳,获得10
5秒前
甜甜谷波发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
ChenXY应助魔幻友菱采纳,获得30
6秒前
所所应助zxj采纳,获得10
7秒前
8秒前
SF完成签到,获得积分10
8秒前
李健应助ly采纳,获得10
9秒前
亮仔发布了新的文献求助10
9秒前
正在完成签到 ,获得积分10
10秒前
10秒前
NexusExplorer应助谢谢谢采纳,获得10
10秒前
txl发布了新的文献求助30
10秒前
11秒前
彭于彦祖应助左丘世立采纳,获得10
12秒前
Nature发布了新的文献求助10
12秒前
铁柱发布了新的文献求助10
13秒前
称心不尤发布了新的文献求助10
13秒前
SciGPT应助冰柠橙夏采纳,获得10
13秒前
Langsam发布了新的文献求助10
13秒前
要长高了完成签到,获得积分10
14秒前
小蘑菇应助110011采纳,获得10
14秒前
Jasper应助andy采纳,获得10
15秒前
虚幻泽洋发布了新的文献求助10
15秒前
赘婿应助迅速的念芹采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
18秒前
完美世界应助feng采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3689741
求助须知:如何正确求助?哪些是违规求助? 3239611
关于积分的说明 9838231
捐赠科研通 2951523
什么是DOI,文献DOI怎么找? 1618421
邀请新用户注册赠送积分活动 765060
科研通“疑难数据库(出版商)”最低求助积分说明 739043