Implementation of an Automated Vegetation Drought Monitoring System Based on Long-Term Satellite Remote Sensing

遥感 植被(病理学) 期限(时间) 卫星 卫星广播 环境科学 计算机科学 地质学 工程类 医学 病理 物理 量子力学 航空航天工程
作者
Zichen Yue,Xin Mei,Shaobo Zhong
标识
DOI:10.1109/agro-geoinformatics59224.2023.10233504
摘要

Droughts are a severe problem globally, and although satellite remote sensing is an effective tool for monitoring drought, current methods require manual intervention and operation to detect drought. This paper proposes a full-automatic drought monitoring system(FADMS) consisting of four main phases: remote sensing data acquisition and preprocessing, drought index calculation and analysis, time-series image service publishing, and analysis and visualization. This system uses Python-based automation scripts, which can automatically download and preprocess satellite remote sensing data efficiently and reliably. We also employed Web Service technology to serve different vegetation drought index algorithms such as Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Temperature Vegetation Dryness Index (TVDI). Moreover, we designed a time-series image service publishing architecture based on GeoServer and ImageMosaic plug-in, enabling the rapid publication of long-term vegetation drought products. Lastly, we used the GIS spatial statistical analysis module to analyze and visualize drought characteristics such as grade, scope, and duration. To demonstrate the effectiveness of our approach, we conducted experiments using MODIS-derived products from 2000 to 2022 in China's northern region. The results confirmed that FADMS could detect and monitor vegetation droughts accurately and timely, identifying drought events' spatiotemporal distribution and evolution trends. FADMS significantly enhances the efficiency and accuracy of vegetation drought monitoring and is highly reliable and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
夏末关注了科研通微信公众号
2秒前
123发布了新的文献求助10
4秒前
连烙发布了新的文献求助10
5秒前
烤鸭完成签到 ,获得积分10
5秒前
荒糖发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
yangya完成签到,获得积分10
8秒前
9秒前
趙途嘵生发布了新的文献求助10
10秒前
科研通AI5应助称心寒松采纳,获得10
10秒前
10秒前
flymouse完成签到,获得积分10
10秒前
wss发布了新的文献求助10
11秒前
12秒前
HH完成签到,获得积分10
12秒前
13秒前
13秒前
Purple发布了新的文献求助10
14秒前
wanci应助谦让的抽屉采纳,获得10
14秒前
15秒前
17秒前
簌落完成签到,获得积分10
17秒前
科研通AI5应助辛勤青亦采纳,获得20
18秒前
深情安青应助123采纳,获得10
19秒前
张育程发布了新的文献求助10
19秒前
20秒前
Purple完成签到,获得积分10
21秒前
thuuu完成签到,获得积分10
21秒前
zxvcbnm发布了新的文献求助10
21秒前
烟花应助彩色映雁采纳,获得10
22秒前
23秒前
橙子完成签到 ,获得积分10
23秒前
昏睡的蟠桃应助洛尘采纳,获得200
24秒前
李白白白完成签到,获得积分10
24秒前
夏末完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427