Prediction of arsenic adsorption onto metal organic frameworks and adsorption mechanisms interpretation by machine learning

吸附 金属有机骨架 废水 化学 金属 无机化学 材料科学 化学工程 环境工程 有机化学 环境科学 工程类
作者
Ting Xiong,Jiawen Cui,Zemin Hou,Xingzhong Yuan,Hou Wang,Jie Chen,Yi Yang,Yishi Huang,Xintao Xu,Changqing Su,Lijian Leng
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:347: 119065-119065 被引量:26
标识
DOI:10.1016/j.jenvman.2023.119065
摘要

Metal–organic frameworks (MOFs) are promising adsorbents for the removal of arsenic (As) from wastewater. The As removal efficiency is influenced by several factors, such as the textural properties of MOFs, adsorption conditions, and As species. Examining all of the relevant factors through traditional experiments is challenging. To predict the As adsorption capacities of MOFs toward organic, inorganic, and total As and reveal the adsorption mechanisms, four machine learning-based models were developed, with the adsorption conditions, MOF properties, and characteristics of different As species as inputs. The results demonstrated that the extreme gradient boosting (XGBoost) model exhibited the best predictive performance (test R2 = 0.93–0.96). The validation experiments demonstrated the high accuracy of the inorganic As-based XGBoost model. The feature importance analysis showed that the concentration of As, the surface area of MOFs, and the pH of the solution were the three key factors governing inorganic-As adsorption, while those governing organic-As adsorption were the concentration of As, the pHpzc value of MOFs, and the oxidation state of the metal clusters. The formation of coordination complexes between As and MOFs is possibly the major adsorption mechanism for both inorganic and organic As. However, electrostatic interaction may have a greater effect on organic-As adsorption than on inorganic-As adsorption. Overall, this study provides a new strategy for evaluating As adsorption on MOFs and discovering the underlying decisive factors and adsorption mechanisms, thereby facilitating the investigation of As wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn发布了新的文献求助10
1秒前
MAVS发布了新的文献求助10
3秒前
科研通AI2S应助有Data发Paper采纳,获得10
4秒前
5秒前
LLM发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
温水发布了新的文献求助60
8秒前
橘柚发布了新的社区帖子
8秒前
星辰大海应助高挑的向真采纳,获得10
9秒前
10秒前
tramp应助橙子采纳,获得10
10秒前
11秒前
12秒前
东瓜魔法师完成签到,获得积分10
13秒前
卜卜脆发布了新的文献求助10
13秒前
HR112应助科研小狗采纳,获得10
13秒前
Ava应助科研小狗采纳,获得10
13秒前
共享精神应助David采纳,获得10
14秒前
斯文梦寒完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
诚心的信封完成签到 ,获得积分10
18秒前
19秒前
思想的小鱼完成签到,获得积分10
21秒前
科研小狗完成签到,获得积分10
22秒前
后叶忽安发布了新的文献求助10
22秒前
22秒前
leeteukxx关注了科研通微信公众号
23秒前
田様应助小土豆采纳,获得10
24秒前
26秒前
26秒前
朱子发布了新的文献求助10
26秒前
27秒前
天天快乐应助标致白卉采纳,获得10
28秒前
wwhh完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946123
关于积分的说明 8528435
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434019
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650679