钝化
材料科学
钙钛矿(结构)
产量(工程)
载流子寿命
化学工程
微晶
纳米技术
光电子学
复合材料
冶金
图层(电子)
硅
工程类
作者
Jidong Deng,Hosein Ahangar,Yuan‐Hui Xiao,Yiyun Luo,Xuanyi Cai,Yanan Li,De‐Yin Wu,Li Yang,Esmaeil Sheibani,Jinbao Zhang
标识
DOI:10.1002/adfm.202309484
摘要
Abstract Considering the high surface defects of polycrystalline perovskite, chemical passivation is effective in reducing defects‐associated carrier losses. However, challenges remain in promoting passivation effects without compromising the carrier‐extraction yield at the perovskite interfaces. In this work, interlayer molecules functionalized with different side groups are rationally designed to investigate the correlation between defect‐passivation strength and interfacial carrier dynamics. It is revealed that Cl‐grafted molecules impose destructive effects on the perovskite structure due to its lower electronegativity and mismatched spatial configuration. The introduction of cyanide (CN) as a side group in molecules also leads to perovskite deformation and unfavorable hole collection. After the molecular optimization, the incorporation of carbonyl (C═O) as the side group (TPA─O) simultaneously promotes the carrier‐collection yield as well as sufficient defect passivation. As a consequence, the devices based on TPA─O yield a champion PCE of 23.25%, along with remarkable stability by remaining above 88.5% of initial performance after 2544 h storage in the air. Furthermore, this interlayer based on TAP─O enables flexible devices to achieve a high efficiency of 21.81% and promising mechanical stability. This work paves the way for further improving the performance of perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI