Well-Testing Model for Dual-Porosity Reservoir considering Stress-Sensitivity and Elastic Outer Boundary Condition

拉普拉斯变换 偏微分方程 灵敏度(控制系统) 数学 边值问题 拉普拉斯方程 数学分析 非线性系统 机械 应用数学 物理 工程类 量子力学 电子工程
作者
Song Chol Kim,Song Guk Han,Yong Song,Jin-Sim Kim,Myong Gun Hong
出处
期刊:Geofluids [Hindawi Limited]
卷期号:2023: 1-16
标识
DOI:10.1155/2023/4658604
摘要

Stress sensitivity and the elastic outer boundary (EOB) condition have a great effect on the analysis of the characteristics of the fluid flow in a reservoir. When researchers analyzed the characteristics of the fluid flow, they have considered the stress sensitivity and the EOB condition separately but have not considered them simultaneously. Therefore, errors are inevitable during the analysis of well testing. The main object of this work is to present a well-testing model for stress-sensitivity dual-porosity reservoir (DPR) with EOB to improve the accuracy of the analysis of well-testing data. To this end, in this paper, we established a well-testing model for the DPR, considering the stress sensitivity and the EOB simultaneously, and presented its semianalytical solution. On the basis of the consideration of the EOB condition and stress sensitivity of permeability (SSP), a seepage model for the DPR with the EOB is built using the continuity equation, motion equation, state equation, and interporosity flow equation between matrix and fracture, which considers the stress sensitivity, wellbore storage, and skin. To solve this model, a nonlinear partial differential equation is changed into a linear form of a partial differential equation by introducing an effective well radius and applying Pedrosa’s transformation and perturbation transformation. Applying the Laplace transformation, an analytical solution in the Laplace space is obtained, and curves of pressure and pressure derivative (PPD) are drawn by numerically inverting them. The model is verified by comparing it with the EOB without consideration of SSP and using case data. The sensitivity of parameters on the curves of PPD is analyzed. This work may be significant for evaluating more accurately the parameters of wells and reservoirs using well testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助小青采纳,获得10
刚刚
刚刚
刚刚
狄从灵发布了新的文献求助10
1秒前
1秒前
QC完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
小霖关注了科研通微信公众号
1秒前
1秒前
小居居完成签到,获得积分10
2秒前
2秒前
周繁发布了新的文献求助10
2秒前
科研通AI6应助Tofly采纳,获得10
3秒前
wxy完成签到,获得积分10
3秒前
逢彼白雉完成签到,获得积分10
3秒前
4秒前
4秒前
林夕完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Zheyuan完成签到,获得积分10
4秒前
六六发布了新的文献求助10
4秒前
橙子发布了新的文献求助10
5秒前
5秒前
小马发布了新的文献求助10
5秒前
Nat完成签到,获得积分20
6秒前
研友_nd7b5L完成签到,获得积分0
6秒前
Mister_CHEN完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
小章发布了新的文献求助30
7秒前
cwq发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
小青发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271