Well-Testing Model for Dual-Porosity Reservoir considering Stress-Sensitivity and Elastic Outer Boundary Condition

拉普拉斯变换 偏微分方程 灵敏度(控制系统) 数学 边值问题 拉普拉斯方程 数学分析 非线性系统 机械 应用数学 物理 工程类 量子力学 电子工程
作者
Song Chol Kim,Song Guk Han,Yong Song,Jin-Sim Kim,Myong Gun Hong
出处
期刊:Geofluids [Hindawi Limited]
卷期号:2023: 1-16
标识
DOI:10.1155/2023/4658604
摘要

Stress sensitivity and the elastic outer boundary (EOB) condition have a great effect on the analysis of the characteristics of the fluid flow in a reservoir. When researchers analyzed the characteristics of the fluid flow, they have considered the stress sensitivity and the EOB condition separately but have not considered them simultaneously. Therefore, errors are inevitable during the analysis of well testing. The main object of this work is to present a well-testing model for stress-sensitivity dual-porosity reservoir (DPR) with EOB to improve the accuracy of the analysis of well-testing data. To this end, in this paper, we established a well-testing model for the DPR, considering the stress sensitivity and the EOB simultaneously, and presented its semianalytical solution. On the basis of the consideration of the EOB condition and stress sensitivity of permeability (SSP), a seepage model for the DPR with the EOB is built using the continuity equation, motion equation, state equation, and interporosity flow equation between matrix and fracture, which considers the stress sensitivity, wellbore storage, and skin. To solve this model, a nonlinear partial differential equation is changed into a linear form of a partial differential equation by introducing an effective well radius and applying Pedrosa’s transformation and perturbation transformation. Applying the Laplace transformation, an analytical solution in the Laplace space is obtained, and curves of pressure and pressure derivative (PPD) are drawn by numerically inverting them. The model is verified by comparing it with the EOB without consideration of SSP and using case data. The sensitivity of parameters on the curves of PPD is analyzed. This work may be significant for evaluating more accurately the parameters of wells and reservoirs using well testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧萧应助fffan采纳,获得10
刚刚
彳亍发布了新的文献求助10
刚刚
schoolboy完成签到,获得积分10
1秒前
科研通AI6应助粥粥采纳,获得10
1秒前
1秒前
dyhhh完成签到 ,获得积分10
1秒前
CipherSage应助欢喜的汽车采纳,获得10
2秒前
ouou完成签到,获得积分10
2秒前
小蜗牛发布了新的文献求助10
3秒前
研友_LjDyNZ完成签到,获得积分10
5秒前
6秒前
积极一德发布了新的文献求助10
6秒前
洁净晓夏完成签到 ,获得积分10
6秒前
谦让的博完成签到,获得积分10
7秒前
7秒前
rxyxiaoyu完成签到,获得积分10
8秒前
9秒前
万能图书馆应助普鲁卡因采纳,获得10
9秒前
不败姑娘完成签到 ,获得积分10
9秒前
10秒前
明理雨莲完成签到,获得积分10
10秒前
危机的桐完成签到,获得积分10
10秒前
10秒前
个性的夜白完成签到,获得积分10
10秒前
Ryubot完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助20
11秒前
丘比特应助哈哈和采纳,获得10
12秒前
12秒前
13秒前
13秒前
憨憨发布了新的文献求助10
13秒前
xuan完成签到,获得积分10
13秒前
隐形曼青应助邢夏之采纳,获得10
13秒前
wangxr完成签到,获得积分10
14秒前
14秒前
Mic应助Wayne采纳,获得10
14秒前
Ryubot发布了新的文献求助10
14秒前
15秒前
xupt唐僧发布了新的文献求助10
15秒前
jj完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034