Well-Testing Model for Dual-Porosity Reservoir considering Stress-Sensitivity and Elastic Outer Boundary Condition

拉普拉斯变换 偏微分方程 灵敏度(控制系统) 数学 边值问题 拉普拉斯方程 数学分析 非线性系统 机械 应用数学 物理 工程类 量子力学 电子工程
作者
Song Chol Kim,Song Guk Han,Yong Song,Jin-Sim Kim,Myong Gun Hong
出处
期刊:Geofluids [Hindawi Limited]
卷期号:2023: 1-16
标识
DOI:10.1155/2023/4658604
摘要

Stress sensitivity and the elastic outer boundary (EOB) condition have a great effect on the analysis of the characteristics of the fluid flow in a reservoir. When researchers analyzed the characteristics of the fluid flow, they have considered the stress sensitivity and the EOB condition separately but have not considered them simultaneously. Therefore, errors are inevitable during the analysis of well testing. The main object of this work is to present a well-testing model for stress-sensitivity dual-porosity reservoir (DPR) with EOB to improve the accuracy of the analysis of well-testing data. To this end, in this paper, we established a well-testing model for the DPR, considering the stress sensitivity and the EOB simultaneously, and presented its semianalytical solution. On the basis of the consideration of the EOB condition and stress sensitivity of permeability (SSP), a seepage model for the DPR with the EOB is built using the continuity equation, motion equation, state equation, and interporosity flow equation between matrix and fracture, which considers the stress sensitivity, wellbore storage, and skin. To solve this model, a nonlinear partial differential equation is changed into a linear form of a partial differential equation by introducing an effective well radius and applying Pedrosa’s transformation and perturbation transformation. Applying the Laplace transformation, an analytical solution in the Laplace space is obtained, and curves of pressure and pressure derivative (PPD) are drawn by numerically inverting them. The model is verified by comparing it with the EOB without consideration of SSP and using case data. The sensitivity of parameters on the curves of PPD is analyzed. This work may be significant for evaluating more accurately the parameters of wells and reservoirs using well testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Megan完成签到,获得积分10
刚刚
刚刚
zybbb发布了新的文献求助20
刚刚
薛枏完成签到,获得积分10
刚刚
柒z完成签到,获得积分10
1秒前
1秒前
cola完成签到,获得积分10
2秒前
雪霓裳发布了新的文献求助10
3秒前
许许许完成签到,获得积分10
3秒前
nanlinhua发布了新的文献求助10
3秒前
思源应助JUYIN采纳,获得10
3秒前
4秒前
伶俐安露发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
毕业比耶完成签到,获得积分10
6秒前
yar应助俭朴的小萱采纳,获得10
6秒前
cici发布了新的文献求助10
6秒前
浮游应助不学无术采纳,获得10
7秒前
黑米粥发布了新的文献求助10
7秒前
11not发布了新的文献求助10
8秒前
8秒前
大模型应助123采纳,获得10
8秒前
bkagyin应助123采纳,获得10
8秒前
窝窝发布了新的文献求助10
8秒前
bksw_viycole发布了新的文献求助10
9秒前
卓荦完成签到,获得积分10
9秒前
吃瓜群众完成签到,获得积分10
9秒前
追光者完成签到,获得积分20
10秒前
wen完成签到,获得积分10
10秒前
10秒前
10秒前
爱吃糖炒栗子的鱼完成签到,获得积分10
11秒前
代军完成签到,获得积分10
11秒前
12秒前
Ethon完成签到,获得积分10
13秒前
StonesKing发布了新的文献求助10
13秒前
十字路口完成签到 ,获得积分10
13秒前
yanjiusheng完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511271
求助须知:如何正确求助?哪些是违规求助? 4605975
关于积分的说明 14496456
捐赠科研通 4541087
什么是DOI,文献DOI怎么找? 2488342
邀请新用户注册赠送积分活动 1470451
关于科研通互助平台的介绍 1442850