Well-Testing Model for Dual-Porosity Reservoir considering Stress-Sensitivity and Elastic Outer Boundary Condition

拉普拉斯变换 偏微分方程 灵敏度(控制系统) 数学 边值问题 拉普拉斯方程 数学分析 非线性系统 机械 应用数学 物理 工程类 量子力学 电子工程
作者
Song Chol Kim,Song Guk Han,Yong Song,Jin-Sim Kim,Myong Gun Hong
出处
期刊:Geofluids [Hindawi Limited]
卷期号:2023: 1-16
标识
DOI:10.1155/2023/4658604
摘要

Stress sensitivity and the elastic outer boundary (EOB) condition have a great effect on the analysis of the characteristics of the fluid flow in a reservoir. When researchers analyzed the characteristics of the fluid flow, they have considered the stress sensitivity and the EOB condition separately but have not considered them simultaneously. Therefore, errors are inevitable during the analysis of well testing. The main object of this work is to present a well-testing model for stress-sensitivity dual-porosity reservoir (DPR) with EOB to improve the accuracy of the analysis of well-testing data. To this end, in this paper, we established a well-testing model for the DPR, considering the stress sensitivity and the EOB simultaneously, and presented its semianalytical solution. On the basis of the consideration of the EOB condition and stress sensitivity of permeability (SSP), a seepage model for the DPR with the EOB is built using the continuity equation, motion equation, state equation, and interporosity flow equation between matrix and fracture, which considers the stress sensitivity, wellbore storage, and skin. To solve this model, a nonlinear partial differential equation is changed into a linear form of a partial differential equation by introducing an effective well radius and applying Pedrosa’s transformation and perturbation transformation. Applying the Laplace transformation, an analytical solution in the Laplace space is obtained, and curves of pressure and pressure derivative (PPD) are drawn by numerically inverting them. The model is verified by comparing it with the EOB without consideration of SSP and using case data. The sensitivity of parameters on the curves of PPD is analyzed. This work may be significant for evaluating more accurately the parameters of wells and reservoirs using well testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈娜娜完成签到,获得积分10
2秒前
XIEQ发布了新的文献求助10
2秒前
2秒前
3秒前
清晾油完成签到,获得积分10
3秒前
Akim应助wanhe采纳,获得10
5秒前
赘婿应助Solitary采纳,获得10
5秒前
香蕉诗蕊应助zj采纳,获得10
5秒前
万能图书馆应助张nmky采纳,获得10
6秒前
6秒前
DXL发布了新的文献求助10
7秒前
红红发布了新的文献求助10
7秒前
8秒前
哇owao完成签到,获得积分10
9秒前
9秒前
好吗好的发布了新的文献求助10
9秒前
天菱完成签到,获得积分10
11秒前
梅梅也完成签到,获得积分10
11秒前
朴实雪兰发布了新的文献求助10
11秒前
x111发布了新的文献求助10
11秒前
Lucas应助缓慢的含双采纳,获得10
12秒前
旱田蜗牛发布了新的文献求助10
13秒前
wanci应助选波采纳,获得10
14秒前
充电宝应助秀丽的平彤采纳,获得10
14秒前
科研通AI2S应助77777采纳,获得10
15秒前
15秒前
Rossie完成签到,获得积分10
15秒前
领导范儿应助x111采纳,获得10
16秒前
梅梅也发布了新的文献求助10
16秒前
lius应助好吗好的采纳,获得10
17秒前
17秒前
wuyanyixie完成签到 ,获得积分20
18秒前
浮游应助idemipere采纳,获得10
18秒前
xinmi完成签到,获得积分10
18秒前
20秒前
20秒前
22秒前
义气山柳完成签到,获得积分10
22秒前
jiahhhao发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413