A novel hybrid optimization model to determine optimum water resources for water supply of residential areas

数学优化 克隆选择算法 启发式 计算机科学 供水 理论(学习稳定性) 混合算法(约束满足) 算法 数学 环境科学 人工智能 人工免疫系统 环境工程 机器学习 随机规划 约束规划 约束逻辑程序设计
作者
Miraç Eryiğit
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:55: 104087-104087
标识
DOI:10.1016/j.jwpe.2023.104087
摘要

In this study, a new hybrid model was improved by combining heuristic and numerical optimization algorithms to decide on optimum water resources based on their costs in the water supply. The purpose of the hybrid model is to reach a best result in the shortest time by simultaneously searching global and local minimums. Therefore, the steepest descent (SD) algorithm (numerical optimization method) was embedded in the classical modified clonal selection algorithm (the classical modified Clonalg) (one of artificial immune systems, heuristic optimization technique). This hybridization allows the SD algorithm to search local minimums while the classical modified Clonalg is searching a global minimum. The hybrid optimization model was applied to the cost objective function depending on distances and piezometric head differences between the water resources and destination. A scenario consists of five hypothetical water resources and one residential area/settlement. Herein, the aim is to satisfy the water demand of the residential area with a minimum cost from the water resources. The cost objective function was also minimized by the regular model (the classical model) according to the scenario, and their results were compared. Both models were run ten times for testing their stabilities. According to the results, the hybrid model is better than the regular model in terms of run time and stability. The hybrid model found a minimum cost for the water supply in a shorter time (in half) in comparison with the regular model in all runs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助xxx采纳,获得10
1秒前
圆锥香蕉发布了新的文献求助20
1秒前
1秒前
彭于晏应助LONG采纳,获得10
2秒前
圆锥香蕉发布了新的文献求助10
2秒前
陈cj发布了新的文献求助10
2秒前
韩清完成签到,获得积分10
3秒前
月月鸟发布了新的文献求助10
3秒前
bkagyin应助yzp采纳,获得10
3秒前
口袋小镇完成签到,获得积分10
3秒前
3秒前
3秒前
小李胖发布了新的文献求助10
4秒前
研友_Z119gZ发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
甜甜蝶完成签到,获得积分10
4秒前
天天快乐应助laola采纳,获得10
5秒前
yznfly应助GE采纳,获得200
5秒前
5秒前
噢噢噢噢关注了科研通微信公众号
5秒前
jianzi927发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
在水一方应助ChenYX采纳,获得10
6秒前
所所应助ChenYX采纳,获得10
6秒前
无极微光应助ChenYX采纳,获得20
6秒前
量子星尘发布了新的文献求助10
7秒前
钟钟完成签到,获得积分10
7秒前
小蛤蟆完成签到,获得积分10
7秒前
李健应助453采纳,获得10
7秒前
英姑应助细心的雪晴采纳,获得30
7秒前
SciGPT应助爱撒娇的从丹采纳,获得10
7秒前
舒适的梦玉完成签到,获得积分10
7秒前
wanci应助红烧狮子采纳,获得10
8秒前
8秒前
番茄炒蛋完成签到 ,获得积分10
8秒前
淡然向日葵完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552002
求助须知:如何正确求助?哪些是违规求助? 4636859
关于积分的说明 14645921
捐赠科研通 4578644
什么是DOI,文献DOI怎么找? 2511052
邀请新用户注册赠送积分活动 1486280
关于科研通互助平台的介绍 1457502