A novel hybrid optimization model to determine optimum water resources for water supply of residential areas

数学优化 克隆选择算法 启发式 计算机科学 供水 理论(学习稳定性) 混合算法(约束满足) 算法 数学 环境科学 人工智能 人工免疫系统 环境工程 机器学习 随机规划 约束规划 约束逻辑程序设计
作者
Miraç Eryiğit
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:55: 104087-104087
标识
DOI:10.1016/j.jwpe.2023.104087
摘要

In this study, a new hybrid model was improved by combining heuristic and numerical optimization algorithms to decide on optimum water resources based on their costs in the water supply. The purpose of the hybrid model is to reach a best result in the shortest time by simultaneously searching global and local minimums. Therefore, the steepest descent (SD) algorithm (numerical optimization method) was embedded in the classical modified clonal selection algorithm (the classical modified Clonalg) (one of artificial immune systems, heuristic optimization technique). This hybridization allows the SD algorithm to search local minimums while the classical modified Clonalg is searching a global minimum. The hybrid optimization model was applied to the cost objective function depending on distances and piezometric head differences between the water resources and destination. A scenario consists of five hypothetical water resources and one residential area/settlement. Herein, the aim is to satisfy the water demand of the residential area with a minimum cost from the water resources. The cost objective function was also minimized by the regular model (the classical model) according to the scenario, and their results were compared. Both models were run ten times for testing their stabilities. According to the results, the hybrid model is better than the regular model in terms of run time and stability. The hybrid model found a minimum cost for the water supply in a shorter time (in half) in comparison with the regular model in all runs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿呀哟呼啦完成签到,获得积分10
1秒前
chenbin完成签到,获得积分10
2秒前
2秒前
hhh发布了新的文献求助10
3秒前
一五完成签到,获得积分10
4秒前
求助NE发布了新的文献求助10
5秒前
楚子航完成签到,获得积分20
5秒前
5秒前
冷静的尔冬完成签到,获得积分10
6秒前
小树发布了新的文献求助10
6秒前
卡皮巴拉完成签到,获得积分10
7秒前
打打应助漂亮的灯泡采纳,获得10
7秒前
冷静的铅笔应助yq采纳,获得10
8秒前
Alan_Mcwave发布了新的文献求助10
9秒前
幽默柚子发布了新的文献求助20
9秒前
yo完成签到,获得积分10
11秒前
nanfang完成签到 ,获得积分10
12秒前
pluto应助sweet采纳,获得10
13秒前
Luo完成签到,获得积分10
13秒前
TUTUKing关注了科研通微信公众号
14秒前
14秒前
pinghu完成签到,获得积分10
15秒前
16秒前
zhuboujs完成签到,获得积分10
18秒前
Luke完成签到,获得积分10
18秒前
lalala应助vvv采纳,获得20
19秒前
19秒前
隐形的康完成签到,获得积分10
20秒前
研友_VZG7GZ应助小树采纳,获得10
20秒前
任新元完成签到,获得积分10
20秒前
23秒前
hhh完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
25秒前
26秒前
猛踹瘸子那条好腿完成签到,获得积分10
26秒前
求助NE完成签到 ,获得积分10
27秒前
sumugeng完成签到,获得积分10
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327450
求助须知:如何正确求助?哪些是违规求助? 2957796
关于积分的说明 8587190
捐赠科研通 2635927
什么是DOI,文献DOI怎么找? 1442642
科研通“疑难数据库(出版商)”最低求助积分说明 668315
邀请新用户注册赠送积分活动 655396