已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Planning Data Poisoning Attacks on Heterogeneous Recommender Systems in a Multiplayer Setting

斯塔克伯格竞赛 计算机科学 推荐系统 人工智能 对手 机器学习 可微函数 计算机安全 数学分析 数学 数理经济学
作者
Chin-Yuan Yeh,Hsi-Wen Chen,De-Nian Yang,Wang-Chien Lee,Philip S. Yu,Ming-Syan Chen⋆
标识
DOI:10.1109/icde55515.2023.00193
摘要

Data poisoning attacks against recommender systems (RecSys) often assume a single seller as the adversary. However, in reality, there are usually multiple sellers attempting to promote their items through RecSys manipulation. To obtain the best data poisoning plan, it is important for an attacker to anticipate and withstand the actions of his opponents. This work studies the problem of Multiplayer Comprehensive Attack (MCA) from the perspective of the attacker, considering the subsequent attacks by his opponents. In MCA, we target the Heterogeneous RecSys, where user-item interaction records, user social network, and item correlation graph are used for recommendations. To tackle MCA, we present the Multilevel Stackelberg Optimization over Progressive Differentiable Surrogate (MSOPDS). The Multilevel Stackelberg Optimization (MSO) method is used to form the optimum strategies by solving the Stackelberg game equilibrium between the attacker and his opponents, while the Progressive Differentiable Surrogate (PDS) addresses technical challenges in deriving gradients for candidate poisoning actions. Experiments on Heterogeneous RecSys trained with public datasets show that MSOPDS outperforms all examined prior works by up to 10.6% in average predicted ratings and up to 11.4% in HitRate@3 for an item targeted by an attacker facing one opponent. Source code provided in https://github.com/jimmy-academia/MSOPDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
yikiheting发布了新的文献求助10
5秒前
研友_LX665Z完成签到,获得积分10
6秒前
MR_芝欧完成签到,获得积分20
16秒前
Lucas应助yikiheting采纳,获得10
22秒前
22秒前
23秒前
25秒前
gc发布了新的文献求助10
28秒前
zzz完成签到 ,获得积分10
29秒前
32秒前
十三完成签到 ,获得积分10
33秒前
36秒前
毛毛毛发布了新的文献求助10
38秒前
38秒前
39秒前
Alusia完成签到 ,获得积分10
42秒前
43秒前
毛毛毛完成签到,获得积分10
43秒前
44秒前
领导范儿应助MAIDANG采纳,获得10
45秒前
46秒前
48秒前
coco发布了新的文献求助10
49秒前
50秒前
123456发布了新的文献求助10
50秒前
53秒前
youy完成签到 ,获得积分10
53秒前
54秒前
调研昵称发布了新的文献求助10
54秒前
sciscisci完成签到 ,获得积分10
56秒前
李李发布了新的文献求助20
56秒前
58秒前
焱焱不忘完成签到 ,获得积分10
58秒前
车轱辘发布了新的文献求助10
59秒前
1分钟前
调研昵称发布了新的文献求助10
1分钟前
1分钟前
泥泥应助coco采纳,获得10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229546
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8198010
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374437
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749